BRAINWARE UNIVERSITY ## Term End Examination 2023-2024 Programme - B.Tech.(CSE)-2023 Course Name - Basic Electrical and Electronics Engineering Course Code - ESCG201 (Semester II) Full Marks: 60 Time: 2:30 Hours [The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.] Group-A (Multiple Choice Type Question) 1 x 15=15 - Choose the correct alternative from the following: - (i) Identify the unit of frequency is - a) Cycle b) Cycle-second c) Hertz/second - d) Hertz - (ii) Calculate the peak value of a sine wave if r.m.s value is 100 A - a) 70.7A b) 141A c) 150A - d) 282.8A - (iii) Determine the identity of a pure inductive circuit - a) Actual power is zero b) Reactive power is zero c) Apparent power is zero - d) None of the above - (iv) Indicate the correct option of the fixed losses in a transformer - a) Eddy current loss b) Hysterisis loss c) Copper loss - d) Both Eddy current and hysterisis losses - (v) Choose from the following, the correct option, according to Kirchoff's voltage law - a) The algebraic sum of all the e.m.f's in the circuit is zero - b) Algebraic sum all the voltage drops in the circuit is zero - c) Algebraic sum of e.m.f's plus algebraic sum - of voltage drops is equal to zero - d) All of these - (vi) Identify the relation between the line voltage and the phase voltage in case of three phase star connection - a) line voltage = 1.732 x phase voltage - b) line voltage = phase voltage - c) phase voltage = 1.732 x line voltage - d) phase voltage = 0.5 x line voltage - (vii) Calculate the rectification efficiency of a half-wave rectifier using applied input a.c. power is 100 watts and the d.c. output power obtained is 40 watts. - a) 20% b) 40% c) 60% d) 100% | (viii) | Select the reverse saturation current in junc | tion diode is independent of | | |--------|--|--|----------| | | a) Potential barrierc) Doping of 'P' and 'N' type regionSelect the positive terminal of the battery is is known as | b) Junction aread) Temperatureconnected to the anode of the diode, then it | | | | a) Forward biasedc) EquilibriumChoose when a forward biased is applied to of the diode | b) Reverse biasedd) Schottky barriera diode, the electrons enter to which region | | | (xi) | a) P-regionc) P-n junctionIdentify during reverse bias, a small current | b) N-regiond) Metal sidedevelops which is known as | | | | a) Forward currentc) Reverse saturation currentIndicate the Fermi level of an n-type semico | b) Reverse currentd) Active current | | | | a) near the conduction band-edgec) at the middle of the forbidden gapIndicate the band gaps of silicon and german | b) near the valence band edged) near the valence band-edge | | | | a) 0.67 eV and 1.1 eV
c) 5.89 eV and 4.6 eV
Indicate that the electron hole pairs are ger | b) 0.87 eV and 6.78 eV
d) 0.54 eV and 0.7861 eV | | | | a) ionisationc) recombinationChoose that at 0 K an intrinsic semiconductor | b) thermal agitationd) doping | | | | a) Conductor
c) Semiconductor | b) Insulator
d) Any of the above | | | | | Group-B
wer Type Questions) | 3 x 5=15 | | 2. E> | plain why only low voltage is applied to the | transformer during short circuit test. | (3) | | 3. St | ate Norton's theorem. | | (3) | | 4. E | xplain the phenomenon of diffusion of curre | nt carriers in a semiconductor. | (3) | | 5. II | 5. Illustrate short note about Avalanche Breakdown. | | | | 6. D | ifferentiate among Active region, Cut-off r | region and Saturation region at CB mode. | (3) | | C | educe the relation between $β$ and $α$. | OR | (3) | | | | | | **Group-C** (Long Answer Type Questions) 5 x 6=30 | 7. | Explain the power factor and apparent power. | (5) | |----|--|-----| | 8. | Comparison between CB, CE and CC configuration of Transistor. | (5) | | 9. | In a common base connection, α = 0.95. The voltage drop across 2 k Ω resistance which is connected in the collector is 2V. Find the base current. | (5) | | 10 | . Distinguish between intrinsic and extrinsic semiconductors and explain the term "Doping". | (5) | | 11 | . Explain the Drift current and Diffusion current in a semiconductor device? | (5) | | 12 | . A 4 pole 220 V dc shunt motor has armature and shunt field resistance of 0.2 ohm and 220 ohm respectively. It takes 20 A at 220 v from the source while running at a speed of 1000 rp Calculate field current, armature current, and back emf. OR | | | | Explain the Armature control method in DC motors. | (5) | **********