

BRAINWARE UNIVERSITY

Term End Examination 2023-2024 Programme - B.Tech.(CSE)-2023 Course Name - Basic Electrical and Electronics Engineering Course Code - ESCG201 (Semester II)

Full Marks: 60 Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- Choose the correct alternative from the following:
- (i) Identify the unit of frequency is
 - a) Cycle

b) Cycle-second

c) Hertz/second

- d) Hertz
- (ii) Calculate the peak value of a sine wave if r.m.s value is 100 A
 - a) 70.7A

b) 141A

c) 150A

- d) 282.8A
- (iii) Determine the identity of a pure inductive circuit
 - a) Actual power is zero

b) Reactive power is zero

c) Apparent power is zero

- d) None of the above
- (iv) Indicate the correct option of the fixed losses in a transformer
 - a) Eddy current loss

b) Hysterisis loss

c) Copper loss

- d) Both Eddy current and hysterisis losses
- (v) Choose from the following, the correct option, according to Kirchoff's voltage law
 - a) The algebraic sum of all the e.m.f's in the circuit is zero
- b) Algebraic sum all the voltage drops in the circuit is zero
- c) Algebraic sum of e.m.f's plus algebraic sum
- of voltage drops is equal to zero
- d) All of these
- (vi) Identify the relation between the line voltage and the phase voltage in case of three phase star connection
 - a) line voltage = 1.732 x phase voltage
- b) line voltage = phase voltage
- c) phase voltage = 1.732 x line voltage
- d) phase voltage = 0.5 x line voltage
- (vii) Calculate the rectification efficiency of a half-wave rectifier using applied input a.c. power is 100 watts and the d.c. output power obtained is 40 watts.
 - a) 20%

b) 40%

c) 60%

d) 100%

(viii)	Select the reverse saturation current in junc	tion diode is independent of	
	a) Potential barrierc) Doping of 'P' and 'N' type regionSelect the positive terminal of the battery is is known as	b) Junction aread) Temperatureconnected to the anode of the diode, then it	
	a) Forward biasedc) EquilibriumChoose when a forward biased is applied to of the diode	b) Reverse biasedd) Schottky barriera diode, the electrons enter to which region	
(xi)	a) P-regionc) P-n junctionIdentify during reverse bias, a small current	b) N-regiond) Metal sidedevelops which is known as	
	a) Forward currentc) Reverse saturation currentIndicate the Fermi level of an n-type semico	b) Reverse currentd) Active current	
	a) near the conduction band-edgec) at the middle of the forbidden gapIndicate the band gaps of silicon and german	b) near the valence band edged) near the valence band-edge	
	a) 0.67 eV and 1.1 eV c) 5.89 eV and 4.6 eV Indicate that the electron hole pairs are ger	b) 0.87 eV and 6.78 eV d) 0.54 eV and 0.7861 eV	
	a) ionisationc) recombinationChoose that at 0 K an intrinsic semiconductor	b) thermal agitationd) doping	
	a) Conductor c) Semiconductor	b) Insulator d) Any of the above	
		Group-B wer Type Questions)	3 x 5=15
2. E>	plain why only low voltage is applied to the	transformer during short circuit test.	(3)
3. St	ate Norton's theorem.		(3)
4. E	xplain the phenomenon of diffusion of curre	nt carriers in a semiconductor.	(3)
5. II	5. Illustrate short note about Avalanche Breakdown.		
6. D	ifferentiate among Active region, Cut-off r	region and Saturation region at CB mode.	(3)
C	educe the relation between $β$ and $α$.	OR	(3)

Group-C (Long Answer Type Questions)

5 x 6=30

7.	Explain the power factor and apparent power.	(5)
8.	Comparison between CB, CE and CC configuration of Transistor.	(5)
9.	In a common base connection, α = 0.95. The voltage drop across 2 k Ω resistance which is connected in the collector is 2V. Find the base current.	(5)
10	. Distinguish between intrinsic and extrinsic semiconductors and explain the term "Doping".	(5)
11	. Explain the Drift current and Diffusion current in a semiconductor device?	(5)
12	. A 4 pole 220 V dc shunt motor has armature and shunt field resistance of 0.2 ohm and 220 ohm respectively. It takes 20 A at 220 v from the source while running at a speed of 1000 rp Calculate field current, armature current, and back emf. OR	
	Explain the Armature control method in DC motors.	(5)
