

BRAINWARE UNIVERSITY

Term End Examination 2022 Programme - M.Sc.(MATH)-2019/M.Sc.(MATH)-2022 Course Name - Real Analysis Course Code - MSCMC102 (Semester I)

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- Choose the correct alternative from the following:
 - (i) Assume that $\alpha \uparrow$ on [a,b]. If $f \in R(\alpha)$ on [a,b], then select the correct statement.

a)
$$\left| \int_a^b f(x) d\alpha(x) \right| = \int_a^b |f(x)| d\alpha(x)$$

b)
$$\left| \int_a^b f(x) d\alpha(x) \right| \le \int_a^b |f(x)| d\alpha(x)$$

c)
$$\int_a^b |f(x)| d\alpha(x) \le \left| \int_a^b f(x) d\alpha(x) \right|$$

- (ii) A function f is defined on $\left(-\frac{1}{3}, \frac{1}{3}\right)$ by $f(x) = 1 + 2.3x + 3.3^2x^2 + \cdots +$ $n.3^{n-1}x^{n-1} + \cdots$ Then write about f.
 - a) f is continuous on $\left(-\frac{1}{2},\frac{1}{2}\right)$

- b) f is continuous on $\left(-\frac{1}{3}, \frac{1}{3}\right)$
- c) f is continuous on $\left[-\frac{1}{2},\frac{1}{2}\right]$

- d) None of the mentioned
- (iii) Compute the Cesaro's sum of the series 1-1+1-1+1-1+...
 - a) 0

b) 0.5

- d) none of the mentioned
- (iv) Compute the Abel's sum of the series 1-1+1-1+1-1+...
 - a) 0

b) 0.5

- d) none of the mentioned.
- (v) Evaluate $\int_0^{0.25} f$, where $f(x) = 1 + 2.3x + 3.3^2x^2 + \dots + n.3^{n-1}x^{n-1} + \dots$

		A Company of the Comp	
(vi)	a) 0 c) 0.25 Indicate the range of validity of the series $\sum_{k=1}^{\infty}$	b) 1 d) none of these $(2^k + 3^k)x^k$	
	a) $-\frac{1}{2} < x < \frac{1}{2}$	b) $-\frac{1}{3} < x < \frac{1}{3}$	
	$c) - \frac{1}{2} \le x < \frac{1}{2}$	$d) = \frac{1}{3} < x \le \frac{1}{3}$	
(vii) If $A \in L(\mathbb{R}^n, \mathbb{R}^n)$, then select the correct statement.			
	a) $x \ge A > 0$	b) $\infty > A > 0$	
	c) $x > A \ge 0$	d) $\infty > A > -\infty$	
(viii) Let Ω be the set of all invertible linear operators on \mathbb{R}^n . Then select the correct statement for Ω .			
	a) Ω closed in $L(R^n)$	b) Ω open in $L(\mathbb{R}^n)$.	
	c) Ω dense in $L(R^n)$.	d) None of the mentioned	
(ix)	Identify the open subset of R?		
(x)	a) [0,1) c) (0, 1) Recognize the correct statement. Every bound	b) (-1, 3] d) [0,1] ed infinite subset of has	
(xi)	 a) at most one limit point in R c) exactly one limit point in R Identify the correct statement for the derived s 	b) at least one limit point in R d) None of the mentioned set S' of any set S and $A, B \subset R$.	

a) $(A \cap B)' = A' \cap B'$

c) $(A \cap B)' \supset A' \cap B'$

a) $A \cap B$ is compact

c) $A \cap B$ is not closed

a) $\int_a^b f d\alpha \leq \int_a^b g d\alpha$

c) $\int_a^b f d\alpha \ge \int_a^b g d\alpha$

a) 0

(xiii) Evaluate the norm of the operator A(x, y) = (x, 0)

(xiv) Evaluate the norm of the operator $A(x, y) = \left(\frac{x}{2}, \frac{y}{2}\right)$

 $A \cap B$.

c) 1

a) 0

b) $(A \cap B)' \subset A' \cap B'$

d) None of the mentioned

b) $A \cap B$ is closed but not

d) none of the mentioned

d) None of the mentioned

b) $\int_a^b f d\alpha < \int_a^b g d\alpha$

d) $\int_a^b f d\alpha > \int_a^b g d\alpha$

compact

b) 0.5

b) 0.5

d) None of these

Group-B (Short Answer Type Questions)

(xv) Assume $\alpha \uparrow$ on [a,b]. If $f(x) \leq g(x)$ on [a,b], then validate the following inequality.

(xii) Let A and B be subsets of R such that A be closed and B be compact. Then classify

2. Show that the set N of all positive integers is not bounded above.	
OR Explain Archimedean Property in R.	(3)
3. Applying definition of compact set show that (0, 1) is not a compact subset of R.	(3)
OR Sketch the prove that a closed and bounded interval is a closed set.	(3)
4. Let $G \subset R$ be an open set and $F \subset R$ be a closed set. Explain why $G - F$ is an open set while $F - G$ is a closed set.	(3)
OR Explain why that Riemann integral on [a, b] is a particular type of Riemann-Stieltjes integral on [a, b].	(3)
	,
5. Test whether the set Z of all integers is not compact.	(3)
OR	· ·
Let A and B be subsets of R of which A is closed and B is compact. Test whether $A \cap B$ is compact.	(3)
6. If the power series $a_0 + a_1x + a_2x^2 +$ diverges for $x = x_1$, then validate that the series diverges for all real x , $ x > x_1 $.	(3)
OR Let A be a $m \times n$ matrix and if $x \in R^n$, then validate that the derivative of A at $x \in R^n$ is A	(3)
Group-C (Long Answer Type Questions)	5 x 6=30
7. State Implicit function theorem and Inverse function theorem	(5)
OR State Banach contraction principle and the rank theorem	
8.	(5)
C.	(5)

Page 3 of 5

Show that the function f(x, y) where $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} x^2 + y^2 \neq 0 \text{ is not } \\ 0 & x = y = 0 \end{cases}$ differentiable at the origin.

OR

Discuss about the infinite intersection of open sets.

- (5)
- 9. From the equation $2x^2 yz + xz^2 = 4$ determine $\frac{\partial x}{\partial y}$, $\frac{\partial x}{\partial z}$ (5)

OR

Using the definition of a compact set, prove that a finite subset of JR is a compact set in R.

(5)

10. Explain the rectifiable curves.

(5)

Calculate the radius of convergence of the power series

(5)

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n+1} (x+1)^n.$$

11. If $1 + x + x^2 + \dots = \frac{1}{x-1}$, |x| < 1 then deduce the power series expansion (5) of $\log(1-x)$.

OR

Assume the power series expansion of $(1+x)^{-2}$ deduce the power series (5) expansion of $tan^{-1}x$.

12. Evaluate the limit points of the set $\{n: n \in \mathbb{N}\}$.

(5)

OR

Test the convergence of the power series
$$\sum_{n=0}^{\infty} nx^{2n}$$
.

(5)

Libraev
Brainware University
398, Ramkrishnapur Read, Barasat
Kolkata, West Bengal-700125