

BRAINWARE UNIVERSITY

Term End Examination 2022 Programme - B.Tech.(CSE)-2019 Course Name - VLSI **Course Code - OEC-701D** (Semester VII)

LIBRARY University E313531, Kolkata . 700125

Full Marks: 60

c) sometimes

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

.5

	(Multiple Choice	γpe Question) 1 x 15=1
1.	Choose the correct alternative from the following	ng:
(i)	VLSI technology identifies to form in	tegrated circuit.
(ii)	a) Transistorsc) diodesLarge-scale integration is defined by	b) switches d) buffers number of transistors.
(iii)	a) 10 to 500c) 20,000 to 1,000,000Choose, P-well doping concentration and depth	b) 1 to 10 d) 500 to 20,000 n will affect the
(iv)	 a) threshold voltage c) Vdd State in which method regularity is used to red 	b) Vss d) Vgs uce complexity.
· (v)	a) random approachc) algorithmic approachWrite the basic chemical reaction used for epit	b) hierarchical approach d) semi-design approach axial growth of pure silicon.
	a) hydrogen reduction of silicon tetrachloride.c) hydrogen reduction of silicon pentachloride.	b) oxygen reduction of silicon tetrachloride.d) oxygen reduction of silicon pentachloride.
(vi	Complete: In depletion mode, source and drain	n are connected by
(vii	a) insulating channelc) Vdd) Cite that the photoresist layer is exposed to	b) conducting channel d) Vss
(vii	a) Visible light c) Infra red light i) Express, in diffusion process of nMOS,	b) Ultraviolet light d) LED impurity is desired.
	a) n type c) np type) Identify, if Silicon-di-oxide is a good insulator.	b) p type d) none of the mentioned
•	a) correct	h) not correct

d) never

(x) C	onclude The drain current is varied by:		
a) c) (xi) D	Gate to source voltage Source Voltage educe the logical low voltage (logic 0) or nega orms		
c)	Channel of negative carriers Channel is clipped hoose, which MOSFET is generally connected	b) Channel is not formed d) Channel of positive carriers to the Vdd in a circuit?	
c)	PMOS CMOS conclude, the current through the n-MOS trans	b) NMOS d) DMOS istor will flow when:	
a) ' (<i>h</i> a-c) '	Vgs > Vtreshold, Vds=0 Vgs > Vtreshold, Vds>0 Poort the switching threshold voltage VTH for	b) Vgd < Vtreshold, Vds=0d) Vgd > Vtreshold, Vds<0	
a) (c) ((VDD-VOL)/2 (VDD)/2 eport the electrical equivalent component for	b) VDD d) 0	
	Resistor Inductor	b) Capacitor d) Switch	·
	Grou (Short Answer Ty	_	3 x 5=15
ExamWith	rt functions of SiO2. ine Vapor Phase Epitaxy. circuit diagram of CMOS NAND gate, describe	e output formation of the truth table, for	(3) (3) (3)
each input combination. 5. What are the different types of VLSI Chips? 6. Construct CMOS full adder by any two different ways. OR			(3) (3)
Rewri	ite Full custom and Semi-custom design.		(3)
	Group (Long Answer Typ		x 6=30
8. Illust	tify Analog & Digital VLSI chips, General purp trate Ion Implantation. struct the diagrams for every step in CMOS fa		(5) (5) (5)
10. Illust 11. Analy	tract the diagrams for every step in Civios in trate Stick diagram. yze the drawing of 3-input CMOS NAND & NO anation of how each output is generated.		(5) (5) (5)
	cize Full custom and Semi-custom design. OR		(5)
Justif	fy FPGA building block architectures.		(5)
