BRAINWARE UNIVERSITY ## Term End Examination 2022 Programme – BCA-2022 Course Name – Computer Hardware & Digital Logic Course Code - BCAC102 (Semester I) | | | · · · · · · · · · · · · · · · · · · · | |-----------------------|--|---| | Full f
[The | Marks: 60
e figure in the margin indicates full marks. Candida
words as far as p | Time: 2:30 Hours tes are required to give their answers in their own practicable.] | | 1. | Group
(Multiple Choice Ty
Choose the correct alternative from the following : | pe Question) 1 x 15=15 | | (i) | Identify the use of Boolean algebra- | Alexander and a second | | | a) Simplify any algebraic expressionc) Minimize the number of connection and inputs in a circuit | b) Solve the mathematical problem d) Perform arithmetic calculation | | (ii) | According to Boolean Law, A+1 match the result | • | | (iii) | a) 1c) 0Convert Decimal 0.345 into an octal number resu | b) A
d) A'
alts | | | a) 0.1605
c) 0.2605
The term BCD, stands for | b) 0.1945
d) 0.2404 | | (v) | a) Biased Coded Decimal, which represents each of the digits of an unsigned decimal as the biased decimal equivalent c) Binary Coded Decimal, that represents each of the digits of an unsigned decimal as the 4-bit binary equivalents. Two nibble is equal to- | b) Binary calculated Decimal, which represents each of the digits of a signed decimal as binary byte d) Binary Coded Decimal, that represents decimal number as the binary equivalents | | χ-, | a) 1 byte | b) 2 bits | | (vi) | c) 2 byte An inverter gate may be implemented using | d) 4 bits | | | a) Two diodes c) Transistors) The OR operation performs in Boolean algebra | b) A resistance and a capacitance d) An inductance and capacitance by- | Page 1 of 3 b) Commutative properties a) Associative properties | | O. H. Calenna | | |--|---|----------| | c) Distributive properties | d) all of these | | | (viii) According to Boolean Law, A+1 | b) 0 | | | a) 1
c) A'· | d) A | · | | (ix) The involution of A is equal to t | | | | a) 1 | b) 0 | | | c) A' | d) A | | | | is used as a latch in digital electronics? | | | a) J-K flip-flop | b) R-S flip-flop | | | c) T flip-flop | d) D flip-flop | | | (xi) The logic circuits, whose output but also on the past outputs are | ts at any instant of time depends only on the present e called | input | | a) Combinational circuit | b) Sequential circuits | | | c) Latches | d) Flip-flops | | | (xii) In a multiplexer the output dep | | 2 | | a) Data inputs | b) Select inputs | | | c) Select outputs | d) Machine input | | | | s drives a 2-input MUX, what is the result? | | | a) 2-input MUX | b) 32-input MUX | | | c) 24-input MÜX | d) 62-input MUX | | | (xiv) The inputs / outputs of an analogous | | | | a) Bidirectional | b) Unidirectional | ž | | c) Even parity (xv) Which of the following circuits (| d) Binary-coded decimal come under the class of combinational logic circuits? | | | | stractor case3. Half adder case4. J-K flip case5. Counte | er | | a) 1 only | b) 3 and 4 | | | c) 4 and 5 | d) 1,2 and 3 | Ψ, | | | | • | | | Group-B | | | | (Short Answer Type Questions) | 3 x 5=15 | | | | | | 2. Find the Canonical SOP Expression: Y(A | A,B)=A+B | (3) | | | | | | | | | | | | | | 3. Write a short note on Exclusive gat | | (3) | | 4. Draw the circuit diagram of the D la | atch and explain its action. | (3) | | 6. Implement the Boolean fun | nalf-subtractors, with the required circuit diagram ction by using basic logic gates: | (3) | | mplement the Boolean rain | otion by dailig basic logic gates. | (3) | | $F = (A + B + C) \cdot (A' + B' + C)$ | ;) . (A + B' + C) | | | | OR | ¥., | | Draw a truth table for the equation | | (3) | | | | 3-2 | | | • | | | | . Group C | | | | Group-C (Long Answer Type Questions) | F + C 20 | | | . January The decarrollal | 5 x 6=30 | Page 2 of 3 | 7.
8.
9.
10. | What are NAND, NOR, X-OR, and X-NOR operations in Boolean algebra? | .(5
(5
(5 | |-----------------------|--|-----------------| | 11. | Implement the following Boolean function with a multiplexer and external gates: $F(A,B,C,D) = \Pi(0,2,5,6,7,8,9,10)$? | (5) | | | | | | 12. | With necessary circuit diagrams, prove NAND is universal gate | (5) | | | OR With necessary circuit diagrams, prove NOR is a universal gate | . (5) | | | | | .(5)