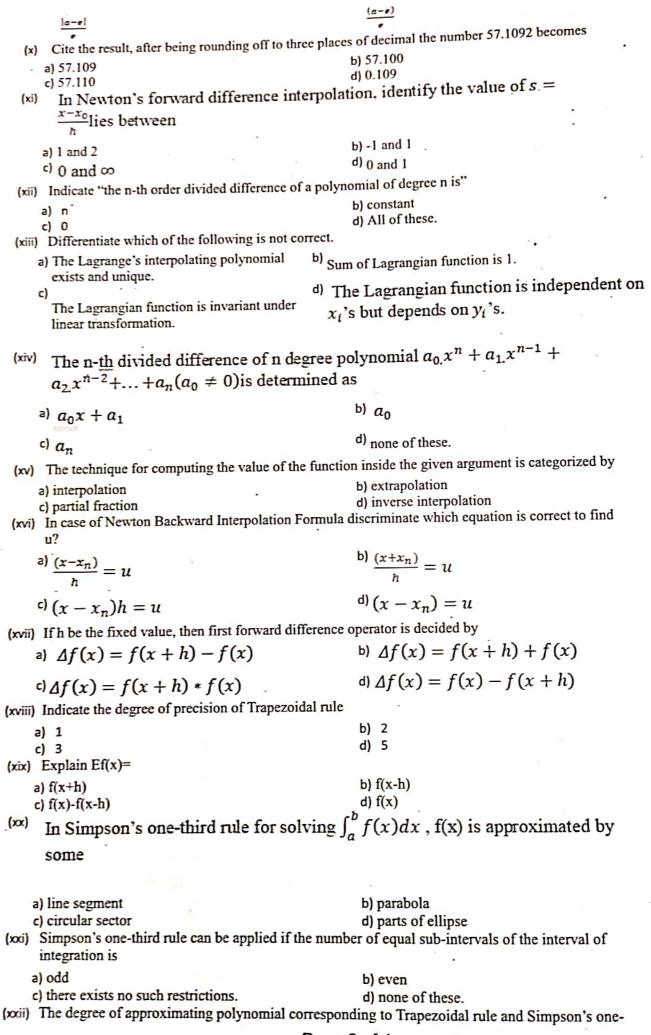


Time: 2:30 Hours



BRAINWARE UNIVERSITY

Term End Examination 2022 Programme - BCA-2019/BCA-2020/BCA-2021 Course Name - Numerical Method ' Course Code - GEBS301 (Semester III)

1.

Full N	Marks: 60 e figure in the margin indicates full marks. Candidates pra	s are required to give their answers in their own wo	rds as far as
1.		Group-A Dice Type Question)	1 x 30=30
•		C 1 (Va) in	
(i)	The interpolation polynomial defined for a given set of values of x and $f(x)$ is		
	a) unique	b) c	
(ii)	 c) has degree 4 Matrix inversion method fails to calculate a sys co-efficient matrix is 	d) none. tem of equations if the determinant value of the	
	a) 0	b) 1	
	a) 2	d) 3	
(iii) Backward substitution method is used to explai	n a system of equations by	
	a) Gauss elimination method	b) Gauss Jordan method	
	c) Matrix factorization method	d) None of these	
(iv	Choose the correct one.		
	"One of the real roots of $xe^x - 2 = 0$ lies betw	veen	
	a) (0,1)	b) (1,2)	
	 c) (2,3)) Identify the number of significant figures in 0.0 	d) None of these.	
(v			
	a) 5	b) 6 d) 4	6.
	 c) 7 i) Consider Regula-Falsi method, the n-th approx 		
(v	a_n and b_n , then the next approximate root is		
	a) $x_{n+1} = a_n - \frac{f(a_n)}{f(a_n) - f(b_n)} (b_n - a_n)$	b) $x_{n+1} = a_n - \frac{f(b_n)}{f(a_n) - f(b_n)} (a_n - b_n)$	
	c) $x_{n+1} = a_n - \frac{f(a_n)}{f(b_n) - f(a_n)} (b_n - a_n)$	d) $x_{n+1} = a_n + \frac{f(a_n)}{f(a_n) + f(b_n)} (b_n - a_n)$	
(v	ii) Diagonal dominance is must to justify for		
	a) Gauss-Seidel method	b) Gauss Elimination method	
	c) LU factorization method	d) All of these	
(vi	iii) Define the number of significant digits in the	number 3.0056.	
	a) 3	b) 4	
	c) 5	d) 2	
(i		ed value, then define formula for relative error.	
,	a) <u>la-el</u>	b) a	
	a take a	d)	
	c)	age 1 of 4	
	· ·	ago i oi a	

	third rule are classified respectively,			
	a) 1,1 c) 1,2	b) 2,1		
		d) 2,2		
	(xxiii) In Simpson's one-third rule if the interval of integration $[x_0, x_n]$ is reframed into two equal sub-intervals then $\int_{x_0}^{x_2} f(x) dx \cong$			
	f_{x_0}			
	$\frac{h}{3}(y_0+4y_1+y_2)$	b) $\frac{h}{2}(y_0 + 2y_1 + y_2)$		
	a) $\frac{h}{3}(y_0 + 4y_1 + y_2)$ c) $\frac{h}{3}(y_0 + 2y_1 + 4y_2)$	b) $\frac{h}{3}(y_0 + 2y_1 + y_2)$ d) $\frac{h}{3}(y_0 + y_1 + y_2)$		
	(xxiv) The predictor-corrector method is determined as			
	a) Euler's method	b) 4-th order Runge-kutta method		
	c) Taylor's series method (xxx) Determine an ordinary differential equa	d) Modified Euler's method		
	$\frac{dy}{dx} = f(x,y) \text{ with } y(x_0) = y_0$	dionor mst order and mst degree		
	a) An IVP	b) A BVP		
	c) Integro differential equation	d) none of these.	,	
	 (xxvi) Infer the result after rounding off to three places of a) 15.231 	b) 15.232		
	c) 15.241	d) 15.2		
	(xxvii) Rearrange the result after rounding off to three place			
	a) 7.17 c) 7.2	b) 7.16 d) 7.165		
	(xxviii) Examine one of the roots of the equation $x^2 + 2x$			
	a) 1 and 2	b) 0 and 0.5		
	c) 0.5 and 1 (xxix) Recall, the order of convergence of Newton-Raphs	d) none of these. on method is		
	a) 3	b) 2		
	c) 1	d) none of these.		
	(xxx) Recall, to solve the system of equations by Gauss			
	a) lower triangular matrix c) diagonal matrix	b) upper triangular matrixd) none of these.		
		up-B e Type Question)	3 x 10=30	
	2. Choose the correct alternative from the following:	Type Question)	3 × 10-30	
(i)	For an equation like $x^2 = 0$, a root exists at x=0. The Bisection method cannot be administered to solve this equation in spite of the root existing at x=0 because the			
	function $f(x) = x^2$			
	a) is a polynomial c) is always non-negative	b) has repeated roots at x=0d) slope is zero at x=0		
(ii)	Develop the Newton-Raphson iterative formula for finding			
	a) x.	b) 3 x	2	
	$x_{i+1} = \frac{x_i}{2}$	$x_{i+1} = \frac{3x_i}{2}$		
		_		
	$x_{i+1} = \frac{1}{2} \left(x_i + \frac{R}{r_i} \right)$	d) None of these.		
	$\lambda_{i+1} = \frac{1}{2} \left(\lambda_i + \frac{1}{x_i} \right)$	None of these.		

(iii) Examine the condition of convergence of Newton-Raphson method when applied to an equation f(x)=0 in an interval is

a)
$$f'(x) \neq 0$$

b)
$$|f'(x)| < 1$$
.

c)
$$\{f'(x)\}^2 > |f(x)f''(x)|$$

d)
$$\{f''(x)\}^2 > |f(x)f'(x)|$$

(iv) Analyse error in one step formula of Simpson's one-third rule $\inf_a^b f(x) dx$

$$a) \frac{-h^5}{90} f^{iv}(c) a < c < b$$

$$b) \frac{-h^5}{90} f^{\nu}(c) a < c < b$$

c)
$$\frac{-h^4}{90} f^{iv}(c) a < c < b$$

d)
$$\frac{-h^3}{90} f''(c) a < c < b$$

(v) In Trapezoidal rule for finding the approximate value of $\int_{12}^{24} f(x) dx$, then calculate error. (when the number of sub-interval is 12)

a)
$$-(\frac{1}{12})f''(\zeta)$$
 where $12 < \zeta < 24$

b)
$$-2f''(\zeta)$$
 where $12 < \zeta < 24$

c)
$$f'(\zeta)$$
 where $12 < \zeta < 24$

(vi) Let f(0) = 1.76, f(1) = 4.24 and then evaluate the Trapezoidal rule gives approximate value of $\int_0^1 f(x) dx$

d) 3.98

(vii) The second order Runge-Kutta method is applied to the initial value problem $y' = -y, y(0) = y_0$ with step-size h. Then estimate y(h).

a)
$$y_0(h-1)^2$$

b)
$$\frac{y_0}{2}(h^2-2h+2)$$

$$^{c)}\frac{y_0}{6}(h^2-2h+2)$$

d)
$$y_0 \left(1 - h + \frac{h^2}{2} + \frac{h^3}{6}\right)$$

(viii) Select the iteration formula of Modified Euler's method

a)
$$y_r^{(n)} = y_{r-1} + \frac{h}{2} [f(x_{r-1}, y_{r-1}) + f(x_r, y_r^{n-1})]$$

b)
$$y_r^{(n+1)} = y_{r-1} + \frac{h}{2} [f(x_{r-1}, y_{r-1}) + f(x_r, y_r^{n-1})]$$

c)
$$y_r^{(n)} = y_{r-1} + \frac{h}{2} [f(x_{r-1}, y_{r-1}) + f(x_r, y_r^n)]$$

d) none of these

Using third order Taylor's series expansion, evaluate the value of y(1.1) from the IVP y' = xy, y(1.0) = 2 is

a) 2.221

c) 2.411

b) 2.311

d) none of these

Estimate the value of k_1 by using RK2 method from the ODE $yy' = y^2 - x$, y(0) = 2, h = 0.2 is

a) 0.4133

b) 0.46333

c) 0.5123 d) none of these