



## **BRAINWARE UNIVERSITY**

## Term End Examination 2022 Programme – BBA LL.B.-2019/BBA LL.B.-2020/BBA LL.B.-2021 Course Name – Quantitative Analysis Course Code - BBALLB301 ( Semester III )

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

## Group-A

(Multiple Choice Type Question)

1 x 15=15

Choose the correct alternative from the following :

(i) Consider the LP problem:

Maximize 5X1 + 8X2

subject to

 $3X1 + 4X2 \le 16$ 

5X1+2X2≤12

X1, X2 ≥ 0

Write the corner point obtained by solving 3X1+4X2=16 and 5X1+2X2=12 as

a) (8/7, 22/7)

b) (7/8, 22/7)

c) (8/7, 7/22)

d) (7/8, 7/22)

(ii) Consider the LP problem

Maximize 3X1 + 8X2

subject to

 $3X1 + 5X2 \le 16$ 

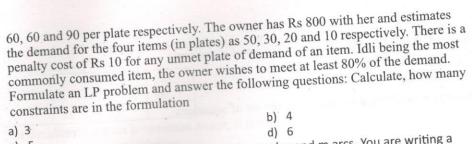
 $5X1 + 3X2 \le 12$ 

 $X1, X2 \ge 0$ 

In the simplex algorithm, the variables that enters first is \_\_\_ and this variable replaces variable \_\_\_\_. Choose the answer to fill the blank.

a) X1, X3

b) X2, X1


c) X2, X3

d) X2, X4

(iii) An investor has Rs 20 lakhs with her and considers three schemes to invest the money for one year. The expected returns are 10%, 12% and 15% for the three schemes per year. The third scheme accepts only up to 10 lakhs. The investor wants to invest more money in scheme 1 than in scheme 2. The investor assesses the risk associated with the three

Page 1 of 8

|                   | sche<br>exce | mes as<br>ed 500 | 0 units,<br>units. Ca  | 10 units and 20 alculate, how ma     | units per | lakh invested        | d and does not want her risk to are in your formulation? |
|-------------------|--------------|------------------|------------------------|--------------------------------------|-----------|----------------------|----------------------------------------------------------|
| <i>(</i> : )      | c) 3         |                  |                        |                                      |           | b) 2                 |                                                          |
| (iv)              | Calc         | ulate            | the maxi               | imum profit for                      | the follo | d) 4<br>Wing 3 x 3 a | assignment problem as                                    |
|                   | 6            | 7                | 2                      |                                      |           | -go Ao a             | assignment problem as                                    |
|                   | 8            | 4                | 3                      |                                      |           |                      |                                                          |
|                   | a) 15        |                  |                        | 3.0103                               | TARRE.    | SMAJARA              | IAHB L                                                   |
|                   | c) 19        |                  |                        |                                      |           | b) 18                |                                                          |
| (v)               | Cons         | ider th          | ne follow              | ving balanced T                      | P with 2  | d) 23                | 13 destinations. The                                     |
|                   | solut        | ion is           | found us               | sing NWC rule.                       | Calculat  | e the cost as        | 13 destinations. The                                     |
|                   | 7            |                  |                        | / 3                                  |           | 50                   | 927000                                                   |
|                   | 30           |                  | 5                      | 8                                    |           | 40                   |                                                          |
| -                 | 30           |                  | 25                     | 35                                   | All ren   | Smgc)                |                                                          |
|                   | 570          |                  |                        |                                      |           | 11                   |                                                          |
| ()                | 580          |                  |                        |                                      |           | b) 575               |                                                          |
| (VI) (            | Observ       | e, wh            | ich of th              | e following state                    | ements    | a) 595               | orthwest corner rule is                                  |
| Ta                | alse:        |                  |                        |                                      | ciricing  | about the no         | orthwest corner rule is                                  |
| a)                | One          | nust e           | xhaust t               | ho summles                           |           |                      |                                                          |
|                   | row b        | efore            | moving                 | down to the nex                      | ach .     | o) One mu            | st exhaust the demand                                    |
| c)                | When         | movi             |                        | down to the nex                      | ct row.   | requiren             | ients of each column bec                                 |
| -,                | one m        | list co          | ng to a r              | new row or colu                      | mn,       | -11                  | o the next column                                        |
|                   | cost.        | u31 36           | lect the               | cell with the lov                    | vest      | One mus              | t check that all supply and                              |
| (vii) In          | transp       | ortati           | on mode                | el analysis the                      |           | demand               | constraints are met.                                     |
| a) c              | btain        | an ini           | tial ontir             | num solution                         | tepping-  | stone metho          | constraints are met.  od is associated to                |
| c) (              | evalua       | te em            | nai optii<br>ntv cells | for potential                        |           | b) obtain ar         | initial feasible sales                                   |
|                   |              |                  |                        |                                      |           | 4) Cvaluale          | empty colle f                                            |
| (viii) Inte       | erpret       | the t            | otal cost              | Of the ontimal                       | د است     | degenera             | criptly cells for possible cy<br>ortation problem        |
| a) is             | s calcu      | lated            | by multi               | plying the total                     | solution  | to a transpo         | ortation problem                                         |
| St                | apply (      | includ           | ling any               | dummunal                             | . 1       |                      |                                                          |
| th                | ie avei      | rage co          | ost of th              | e cells                              | by        | informatio           | e calculated from the                                    |
| C) C              | an be        | calcula          | ated from              | n the ani-i                          | on-       |                      | ii given                                                 |
|                   |              |                  |                        |                                      | ade       | can be cal           | culated based only on the                                |
| (ix) Cos          | nsider       | mprov            | /ement                 |                                      |           | entries in t         | he filled cells of the solution                          |
| 1                 | 3            | 5                | 00 4 ma                | chine assignme                       | nt proble | em:                  | of the solution                                          |
| 6                 | 7            | 6                | -                      |                                      |           |                      |                                                          |
| 2                 | 4            |                  | +                      |                                      |           |                      |                                                          |
| 7                 | 8            | 3                | -                      |                                      |           |                      | 52. 2                                                    |
|                   | -            | 9                |                        |                                      |           |                      |                                                          |
| runct             | ion va       | lue at           | the opti               | mum as                               |           | Choo                 | se, the objective                                        |
| a) 9              |              |                  |                        |                                      | h)        | 10                   | d defined as a sill                                      |
| c) 11<br>x) A foo | .1 1         |                  |                        |                                      | (۵        | 10                   |                                                          |
| hae 1             | nieca        | sells            | ıdlis, do              | sas and poories.                     | A plate   | of idli has a        | pieces, a plate of dosa                                  |
| idlis             | nd 2 -       | while            | a plate o              | f poori has 2 pie                    | eces. Th  | ev also sell -       | pieces, a plate of dosa<br>"combo" which has 2           |
|                   |              |                  |                        |                                      |           |                      |                                                          |
| batter            | Each         | noori            | requires               | I spoon of batte                     | er and ea | ch dosa requ         | elve spoons of batter.                                   |
|                   |              |                  |                        |                                      |           |                      |                                                          |
|                   |              | - ALL 1110       | INC 20 08              | quires I ball of valls of dough. The | he sellin | g prices of the      | ne items are D                                           |



(xi) Consider the maximum flow problem with n nodes and m arcs. You are writing a formulation with f as the maximum flow. Write the total number of variables

a) m+1

b) n+1

c) m+n+1

d) m.n+1

- (xii) Select the term with which Game theory is concerned:
  - a) predicting the results of bets placed on games like roulette.
  - c) utility maximization by firms in perfectly competitive markets.
- b) the choice of an optimal strategy in conflict situations.
- d) the migration patterns of caribou in Alaska
- (xiii) Tell, which of the following statements are not true of simulation?
  - a) A simulation model cannot prescribe
  - what should be done about a problem. c) simulation model can be used to study
  - alternative solutions to a problem.
- b) the equation describing the operating characteristics of the system are known.
- d) Simulation models the behavior of a system.

(xiv) Consider the LP problem:

Maximize 7X1 + 6X2

subject to

 $X1 + X2 \le 4$  $2X1 + X2 \le 6$ 

X1,X2 ≥ 0

Write the objective function corresponding to the optimum solution as

a) 24

b) 26

c) 28

d) 30

- (xv) Game theory is concerned with
  - a) predicting the results of bets placed on games like roulette.
  - c) utility maximization by firms in perfectly competitive markets.
- b) the choice of an optimal strategy in conflict situations.
- d) the migration patterns of caribou in Alaska.

## Group-B (Short Answer Type Questions)

3 x 5=15

Discuss all the basic solutions of the following equations identifying in each case the basic vectors and the basic variables. Also identify the degenerate solution if any:

$$3x_1 + x_2 - x_3 = 3$$

$$2x_1 + 3x_2 + x_3 = 2$$

(3)

Prove that (2,1,3) is a feasible solution of the set of equations

$$4x_1 + 2x_2 - 3x_3 = 1$$

$$6x_1 + 4x_2 - 5x_3 = 1$$

Represent it to a basic feasible solution of the set of equations.

3. Using Graphical method solve the following L.P.P

$$Max z = 4x_1 + 3x_2$$

Subject to

$$2x_1 + 3x_2 \le 8$$

$$3x_1 + 2x_2 \le 12$$

$$x_1, x_2 \ge 0$$

OR

Solve the following linear programming problem by graphical method.

Max Z = 100x + 100y.

Sub to:  $10x + 5y \le 80$ 

 $6x + 6y \le 66$ 

 $4x + 8y \ge 24$ 

 $5x + 6y \le 90$ 

x, y ≥0

Construct a network for a project whose activities and their predecessor

relationship are given in the following table

| Activity    | A | В | С | D | E | F    | G   | Н | I | J | K    | L    |
|-------------|---|---|---|---|---|------|-----|---|---|---|------|------|
| Predecessor | - | A | В | A | D | C, E | D · | D | Н | Н | F, H | G, J |

OR

Construct a network for a project whose activities and their predecessor

relationship are given in the following table

| Activity    | A | В | C | D | E | F | G | Н | I | J    | K  |
|-------------|---|---|---|---|---|---|---|---|---|------|----|
| Predecessor | - |   | - | A | В | В | С | D | Е | H, I | F, |

5.

(3)

(3)

(3)

(3)

Consider the TP. You are given the allocations  $X_{11} = 20$ ,  $X_{13} = 30$ ,  $X_{21} = 10$ ,  $X_{22}$ 

| 5  | 6  | 3  | 50 |
|----|----|----|----|
| 7  | 5  | 8  | 40 |
| 30 | 25 | 35 |    |

Test the above solution is optimum or not, if not then reduce to the corresponding optimum solution.

OR

Deduce the maximum profit for the following 4x 3 assignment problem is

(3

| 1 | 1 | 4 |
|---|---|---|
| 6 | 7 | 2 |
| 8 | 4 | 3 |
| 6 | 3 | 7 |

6. Solve the 2x2 person zero sum game

|        | Player B |    |    |  |
|--------|----------|----|----|--|
|        | Y        | B1 | B2 |  |
| Player | A1       | 2  | 3  |  |
| A      | A2       | 4  | -1 |  |

(3)

OR

Justify, for what value of  $\lambda$ , the game with the following payoff matrix is strictly determinable?

(3)

(1)

|   |    | В |    |
|---|----|---|----|
|   | 2  | 6 | 2  |
| A | -1 | λ | -7 |
|   | -2 | 4 | λ  |

(ii)

|   |    | В | and the |
|---|----|---|---------|
|   | 2  | 7 | 3       |
| A | -2 | 2 | -8      |
|   | -3 | 4 | λ       |

Group-C

(Long Answer Type Questions)

5 x 6=30

7.

(5)

Consider the TP. You are given the allocations  $X_{11} = 20$ ,  $X_{13} = 30$ ,  $X_{21} = 10$ ,  $X_{22} = 25$  and  $X_{23} = 5$ 

| 5  | 6  | 3  | 50 |
|----|----|----|----|
| 7  | 5  | 8  | 40 |
| 30 | 25 | 35 |    |

Test the above solution is optimum or not, if not then reduce to the corresponding optimum solution.

OR

Deduce the maximum profit for the following 4x 3 assignment problem is

(3)

| 1   | 1  | 4 . |
|-----|----|-----|
| 6   | 7  | 2   |
| 8 . | 4  | 3   |
| 6   | 3. | 7   |

. .

6. Solve the 2x2 person zero sum game

(3)

|        | Player B |    |    |  |
|--------|----------|----|----|--|
|        |          | B1 | B2 |  |
| Player | A1       | 2  | 3  |  |
| A      | A2       | 4  | -1 |  |

OR

Justify, for what value of  $\lambda$ , the game with the following payoff matrix is strictly determinable?

(3)

(i)

|   |    | В |    |
|---|----|---|----|
|   | 2  | 6 | 2  |
| A | -1 | 2 | -7 |
|   | -2 | 4 | λ  |

(11)

|   |    | В |    |
|---|----|---|----|
|   | 2  | 7 | 3  |
| A | -2 | 2 | -8 |
|   | -3 | 4 | 1  |

Group-C

(Long Answer Type Questions)

5 x 6=30

7.

(5)

Apply simplex methods to evaluate the optimal solution of the following L.P.P.  $Max z = 3x_1 + x_2 + 3x_3$ 

Subject to the constraint

 $2x_1+x_2+x_3 \le 2$ 

 $x_1+2x_2+3x_3 \le 5$ 

 $2x_1 + 2x_2 + x_3 \le 6$ 

for  $x_1, x_2, x_3 \ge 0$ 

Identify the optimal solution and the corresponding cost of transportation in the following transportation problem

|        | D1 | D2 | D3 | D4 | Supply   |
|--------|----|----|----|----|----------|
| 01     | 4  | 6  | 8  | 8  | 40       |
| 02     | 6  | 8  | 6  | 7  | 60       |
| 03     | 5  | 7  | 6  | 8  | 50       |
| Demand | 20 | 30 | 50 | 50 | . 100000 |

Determine the dual of the following problem:

Maximize 
$$z = 3x_1 + x_2 + 2x_3 - x_4$$
  
Subject to

$$2x_1 - x_2 + 3x_3 + x_4 = 1$$

$$x_1 + x_2 - x_3 + x_4 = 3$$

 $x_1, x_2 \ge 0$  and  $x_3, x_4$  are unrestricted in sign. Show further that the dual of the dual problem is primal.

OR

The Head of the department has five jobs A, B, C, D, E and five subordinates V, W, X, Y, and Z. The number of hours each sub-ordinate would take to perform each job is as follows:

|   | V  | W   | X  | Y  | Z  |
|---|----|-----|----|----|----|
| A | 3  | 5   | 10 | 15 | 8  |
| В | 4  | 7 . | 15 | 18 | 8  |
| C | 8  | 12  | 20 | 20 | 12 |
| D | 5  | . 5 | 8  | 10 | 6  |
| Ε | 10 | 10  | 15 | 25 | 10 |

Describe the process by which the jobs be allocated to minimize the total time?

(5)

(5)

(5)

(5)

|          | Playe | er B |
|----------|-------|------|
| Player A | B1    | B2   |
| A1       | 1     | -3   |
| A2       | 3     | 5    |
| A3       | -1    | 6    |
| A4       | 4     | 1    |
| A5       | 2     | 2    |
| A6       | -5    | 0    |

Evaluate the Optimal strategies for player A and B using graphical method. Also determine the values of the game.

OR

| Decide the solution of the game using Dominance method whose pa | y off |
|-----------------------------------------------------------------|-------|
| matrix is given by                                              |       |
| D                                                               |       |

| 4 |    |    | В  |    |      |
|---|----|----|----|----|------|
|   |    | B1 | B2 | В3 | B4 · |
| A | A1 | 2  | 1  | 4  | 0    |
|   | A2 | 3  | 4  | 2  | 4    |
|   | A3 | 4  | 2  | 4  | 0    |
|   | A4 | 0. | 4  | 0  | 8    |

Page 8 of 8