

BRAINWARE UNIVERSITY

Term End Examination 2023-2024 Programme – Dip.CSE-2022 Course Name - Design and Analysis of Algorithm Course Code - DCSE-PC402 (Semester IV)

Time: 2:30 Hours Full Marks: 60

The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- Choose the correct alternative from the following:
- (i) Write which of the following steps is NOT typically involved in designing an algorithm for solving real-life problems?
 - a) Identifying the problem and its constraints
- - c) Writing code without planning
- d) Evaluating and refining the algorithm based on feedback

b) Gathering and analyzing data

- (ii) Identify when designing an algorithm for a real-life problem, what is the importance of considering the problem's constraints?
 - a) Constraints limit the creativity of the algorithm designer
 - c) Constraints are irrelevant and can be ignored
- b) Constraints define the boundaries within which the algorithm must operate
- d) Constraints increase the complexity of the algorithm unnecessarily
- (iii) Identify which of the following is a common approach to designing algorithms for reallife problems?
 - a) Trial and error

- b) Copying algorithms from textbooks
- c) Designing algorithms without understanding the problem
- d) Following a systematic problem-solving process
- (iv) Choose the correct one from following option that is true regarding the complexity classes P, NP, and NP-hard.
 - a) NP-complete problems are a subset of NPhard problems.
- b) Every problem in P is also in NP.
- c) NP-hard problems can be solved in polynomial time.
- d) P = NP
- (v) Choose the correct option: A non-deterministic algorithm is said to be nondeterministic polynomial if the time-efficiency of its verification stage is
 - a) polynomial

- b) non-polynomial
- c) Either polynomial or non-polynomial
- d) None of these

(vi)) Choose the class to which the CNF-Satisfiability problem, which stands for Conjunctive Normal Form satisfiability problem, belongs.				
	a) NP class	b) P class			
(vii)	c) NP completeChoose the correct option that is intractable.	d) NP hard			
	a) Problems that cannot be solved in polynomial time	b) All P and NP problems			
	c) Problems that can be solved in polynomial time	d) None of these			
(viii) Choose from following the option that is not a string matching algorithm					
(ix)	a) Knuth-Morris-Pratt Algorithmc) Insertion Sort AlgorithmSolve the worst case time complexity of KMP allength of text, n = length of pattern)?	b) Naive String Matching Algorithmd) Rabin-Karp Algorithmgorithm for pattern searching (m =			
	a) O(n)	b) O(n*m)			
(x)	c) O(m) Write down the approach is being followed in F	d) O(log n) loyd Warshall Algorithm			
(///	a) Greedy technique	b) Dynamic Programming			
	c) Linear Programming	d) Backtracking			
(xi)	Select the method that is commonly used to so				
	a) Iteration method	b) Dynamic programmingd) Substitution method			
(xii)	 c) Memoization d) Substitution method (xii) Identify the time that depends on the input: an already sorted sequence that is easier to sort. 				
	a) Process	b) Evaluation			
(xiii)	c) Running Predict which of the following is a disadvantage				
(xiv)	a) It is easy to implementc) It guarantees optimal solutionIdentify the correct option for Traveling Salesman	 b) It has high time complexity d) It is suitable for all types of problems an problem (TSP) 	S		
	a) Finding the shortest path between two nodes in a graph	b) Finding the longest path between tw nodes in a graph	10		
(50.4)	c) Finding the shortest path that visits every node in a graph exactly once	d) Finding the longest path that visits ended in a graph exactly once	very		
(xv) Predict which of the following is a disadvantage of Strassen's algorithm for matrix multiplication.					
	a) It has a high space complexity	b) It requires fewer arithmetic operatio compared to the conventional algorit			
	c) It only works for square matrices with a size that is a power of power of 2	d) It always produces accurate results			
Group-B (Short Answer Type Questions) 3 x 5=15					
2. Show how does data gathering and analysis contribute to algorithm design for real-life			(3)		
problems? 3. Explain would you use pattern matching in a real-time system?			(3)		
4. E	4. Explain the Greedy Method in Design & Analysis of Algorithms.				
5. Examine the time complexity of the following recurrence using Master's theorem. $T(n) = 2T$ (3) $(n/2) + n/\log n$					
6. Differentiate between problems in P and problems in NP. (3)					
	OR				

	Explain an example of a problem in NP.	(3)	
Group-C			
	(Long Answer Type Questions)	5 x 6=30	
7.	bescribe the substitution method for solving a requirement	(5)	
8.	multiplication.	(5)	
9. 10	Write down the Ford-Fulkerson algorithm and explain step by step with example. Explain what NP-hard problems are and how they differ from problems in the class NP.	(5) (5)	
	Provide a detailed overview of their characteristics. Evaluate how do approximation algorithms contribute to decision-making processes in real world scenarios?		
	World Scendings,		
12.	Illustrate the concepts of NP-completeness and discuss their significance in understanding the complexity landscape of computational problems.	(5)	
	OR Explain the concepts of reducibility and NP-completeness in the context of computational complexity theory.	(5)	