

BRAINWARE UNIVERSITY

Term End Examination 2023-2024
Programme – M.Sc.(MATH)-2022
Course Name – Mathematical Ecology
Course Code - MSCME402B
(Semester IV)

Full Marks: 60

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

1. Choose the correct alternative from the following:

(i)	Identify the correct option, A Malthusian growth model sometimes called it in the name
	of

a) Logistic growth model.

b) SIR model

c) SI model

- d) Simple exponential growth model
- (ii) Identify the general solution of x(t) of the system x' = -x + 2y, y' = 4x + y is given by, here c_1 and c_2 are arbitrary constant.
 - a) $c_1e^{3t} + c_2e^{-3t}$

b) $c_1e^{2t} + c_2e^{-3t}$

c) $c_1e^{2t} + c_2e^{4t}$

- d) $c_1e^{3t} + c_2e^{-4t}$
- (iii) Select the correct statement, In the Harvest model with optimal control theory, the term "yield" refer to......
 - a) The total biomass of the harvested species.
- b) The monetary value of the harvested resource.
- The rate of reproduction of the harvested species.
- The maximum sustainable harvest rate.
- (iv) Choose the correct option, ______terms is often used interchangeably with "activator" in bio-mathematics.
 - a) Inhibitor

b) Enhancer

c) Repressor

- d) Substrate
- (v) Identify the jacobian matrix of the given system is $\frac{dx}{dt} = -x y$

$$\frac{dy}{dt} = x - y$$

a)
$$J = \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix}$$

b)
$$J = \begin{bmatrix} -2 & -1 \\ 1 & -1 \end{bmatrix}$$

c)	1 -	-1	-21
1	1 —	$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$	-1

d)
$$J = \begin{bmatrix} -1 & -1 \\ 5 & -1 \end{bmatrix}$$

a)
$$\frac{dN}{dt} = rN - aN^2$$

b)
$$\frac{dN}{dt} = r$$

c)
$$\frac{dN}{dt} = -a$$

- d) none of these.
- (vii) $\frac{dN}{dt} = rN\left(1 \frac{N}{K}\right)$, where $N = Population density, r = intrinsic growth rate, <math>K = carrying \ capacity$. The given model is classified as
 - a) Logistic growth model.

b) Malthus growth model.

c) Two species model.

- d) none of these.
- (viii) Identify the correct answer, the population doubling time for the exponentially growing species is

c) r

- d) None of these
- (ix) The Gompertz growth model express as

a)
$$\frac{dN}{dt} = r_0 e^{-\theta t} N$$

b)
$$\frac{dN}{dt} = r_0 e^{\theta t} N$$

c)
$$\frac{dN}{dt} = e^{-\theta t}N$$

- d) none of these.
- (x) Choose the correct option,

$$\frac{dx}{dt} = x(\alpha - \beta y)$$

$$\frac{dy}{dt} = y(-\gamma + \delta x)$$

The number of equilibrium point of the above model.

- (xi) The relation between Latent Period and incubation Period express as, write the correct option.
 - a) Latent Period < Incubation Period
- b) Latent Period>Incubation
 Period
- c) Latent Period SIncubation Period
- d) None of these
- (xii) The system represented as $\frac{dB}{dT} = rB\left(1 \frac{B}{K}\right) \frac{mB^2}{a^2 + B^2}$ for Nondimensionalization we apply B = xa and $T = \frac{a}{m}t$ then the system becomes $\frac{dx}{dt} = px\left(1 \frac{x}{q}\right) \frac{x^2}{1 + x^2}$ then evaluate the value of p is.

a)
$$\frac{ar}{m}$$

c) $\frac{r}{m}$

- d) None of these
- (xiii) Select the correct option, $x_{t+1} = f(x_t)$ be the discrete model, f' is continuous and \bar{x} be the equilibrium point of then system is unstable if

a) $ f'(\bar{x}) > 1$	b) $ f'(\bar{x}) < 1$				
c) $ f'(\bar{x}) = 1$	d) None of these				
(xiv) The model is classify as					
	$r_1N_1\left(1-\frac{N_1}{K_1}+\frac{a_{12}}{K_1}N_2\right)$				
$\frac{dN_2}{dt} = r$	$\gamma_2 N_2 \left(1 - \frac{N_2}{K_2} + \frac{\alpha_{21}}{K_2} N_1\right)$				
 a) Single species competition mod 	model				
 c) Three species competition mod 	el d) None of these				
(xv) Identify the critical point of the m	nodel $\frac{dx}{dt} = x - ax^2$ from the given option.				
a) 1	b) <u>1</u>				
c) 2	d) None of these				
	-/ None of mese				
(Shor	Group-B				
	t Answer Type Questions)	3 x 5=15			
2. Examine the general solution of the	linear autonomous system	(3)			
	$\frac{dx}{dt} = y$				
<u> </u>	$\frac{dy}{dt} = -x$				
	it				
3. Describe Stability of single species m	nodel.	(3)			
		(3)			
4. Express a model of three species with holling type-II functional response.					
5. Summarize harvesting in fishing cultivation.					
6. Estimate Quasi asymptotic Stability.		(2)			
o. 25th ac Quasi asymptotic Statinty.		(3)			
	OR				
Estimate Asymptotic stability.	OK .	(3)			
H	Group-C	F C . 24			
(Long	Answer Type Questions)	5 x 6=30			

a) $|f'(\bar{x})| > 1$

7.	Show that the critical point (0,0) of the given system is asymptotically stable,	(5)	
	$\frac{dx}{dt} = -2x$		
	$\frac{dy}{dy} = -4y$		

- 8. Explain the stability of the single species logistic model. (5)
- 9. Calculate the equilibrium point and discuss the stability around K_0 , (5) $\frac{dN}{dt} = \text{rN}\left(1 \frac{N}{K}\right)\left(\frac{N}{K_0} 1\right)$
- 10. Explain the stability of the equilibrium point (1,0) and draw the phase plane: $\frac{dx}{dt} = x(1-x) xy$ $\frac{dy}{dt} = \beta y(x-\alpha)$ (5)

Where α and β are positive constant.

11. Construct the Jacobian matrix of the given model: (5)

$$\begin{split} \frac{dN}{dt} &= r_1 N \left(1 - \frac{N}{K} \right) - \frac{a_1 N P_1}{b_1 + N} - \frac{a_2 N P_2}{b_2 + N} \\ &\frac{dP_1}{dt} = \frac{e_1 a_1 N P_1}{b_1 + N} - d_1 P_1 \\ &\frac{dP_1}{dt} = \frac{e_2 a_2 N P_2}{b_2 + N} - d_2 P_2 \end{split}$$

- 12. Construct the mutualistic model two competitive species. (5)
 - OR
 Explain the two prey one predator model of holling type-II model. (5)
