BRAINWARE UNIVERSITY Term End Examination 2023-2024 Programme – Dip.ME-2022 Course Name – Operations Research Course Code - DMEOE402A (Semester IV) | Fu | II Marks: 60 | Time : 2:30 Hours | |------|--|---| | | [The figure in the margin indicates full marks. Car | ndidates are required to give their answers in their | | | Own words as to | ar as practicable.] | | | erredce to thick have bringerings Gro | up-A | | 1. | (Multiple Choice
Choose the correct alternative from the followi | Type Question) 1 x 15=15 ing: | | (i) | Identify the appropriate reason for which the generated. | need of 'Operation Research' is | | (ii) | a) International Emergency.c) Combined efforts of talents of all fields.Examine the correct duration when Operation | b) Political Problem.d) Economics and Engineering.Research came into operation. | | | a) Freedom fighting movement of India.c) World War – II.Identify the number of variables have in the fo | b) World War – I.
d) Cold War. | | | a) 20
c) 30
Identify the number of constraints have in the
problem. | b) 25
d) 35 | | (v) | a) 15 c) 25 The total opportunity cost matrix is observed b correct answer. | b) 20
d) 30
y doing Judge the | | vi) | a) Row operation on row opportunity cost matrix. c) Column operation on column opportunity cost matrix. If the game is having a saddle point, then select to solve the game: | b) Column operation on row opportunity cost matrix. d) None of these. t from the following that method is used | | /ii) | a) Linear Programming method
c) Algebraic method
In case there is no saddle point in a game then t
a) Deterministic game | | | | | b) Fair game | | c) Mixed strategy game(viii) In a two-person zero sum game, identify from | d) Multiplayer game n the following that does not hold correct | |--|--| | a) Row player is always a loserc) Column player always minimizes losses(ix) Identify the wrong statement: | b) Column player is always a winnerd) If one loses, the other gains. | | a) Game without saddle point is probabilistic | b) Game with saddle point will have pure
strategies | | c) Game with saddle point cannot be solved by dominance rule (x) Select wrong option from below. | d) Game without saddle point uses mixed strategies | | a)
a model should be simple and coherent | b) a model should not take much time in its
construction for any problem | | A model representing the typical budget of
business accounts is called "account model" | d) a model which has the probability of
measuring observations is called
"qualitative model" | | (xi) Determine the correct one-A constraint in an I | -PP restricts | | a) value of objective function c) use of available resource (xii) Non-negativity condition is an important comportant correct option. | b) value of a decision variabled) uncertainity of optimum value | | a) variables are inter-related in terms of
limited resources c) value of variables should remain under the | b) value of variables make sense and correspond to real world problems | | control of decision-maker (xiii) Minimization of objective function in LPP deter | none of these | | a) least value chosen among the allowable decision c) Both least value chosen among the allowable decision and greatest value | b) greatest value chosen among the allowable decisions d) none of these | | chosen among the allowable decisions (xiv) Determine "The general linear programming progr | | | a) | | | a) the constraints are strict equations | b) the constraints are inequalities of 'less than
or equal to' type | | c) the constraints are inequalities of 'greater
than or equal to' type
(xv) A feasible solution to an LPP illuustrate as | d) the decision variables are unrestricted in sign | | a) must satisfy all of the problem's constraints simultaneously | b) must be a corner point of the feasible region | | c) need not satisfy all of the constraints, only some of them | d) must optimize the value of the objective function | | Grou | n-B | | (Short Answer Ty | pe Questions) 3 x 5=15 | | Illustrate the important characteristics of Decision Explain how Operation Research techniques are he Identify and explain the essential features of OR ap Explain feasible solution and basic feasible solution Illustrate the areas of application of network analysis OR | elpful I decision-making. (3) eproch. (3) n. (3) sis. (3) | | Explain the phrase 'Critical path'. | and the second of o | | | (3) | ## **Group-C** (Long Answer Type Questions) 5 x 6=30 | | Convert the following primal problem into dual. Minimize $G = 16x - 20y$ subject to following constrains; $2x - 5y >= 3$; $3x - 2y >= 4$; $x, y > 0$ | | |-----|--|----| | | Compute the value of x and y for the following problem: Minimize $Z = 3x - 2y$ subject to the following constrains; $2x + y > 4$: $x + 2y < 6$: $x + y > 0$ | | | | constrains; $2x + 3y >= 12$; $x + 2y <= 8$; $y > 0$ | (5 | | 10. | State the characteristics of Dual Problem | (5 | | 11. | Explain Modified Distribution method with suitable numerical example. | (5 | | LZ. | Illustrate Least cost method with suitable numerical example. | (5 | | | OR Explain Vegel and the second of secon | | | | Explain Vogel approximation method with suitable numerical example. | (5 |