

BRAINWARE UNIVERSITY

Term End Examination 2023-2024 Programme - Dip.RA-2022 Course Name – Al in Robotics Course Code - ECPE402C (Semester IV)

Time: 2:30 Hours Full Marks: 60

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

x 15=15

c) Best-first search

c) Logical rules

a) Hierarchical structures

(vii) Frames are used to represent knowledge in terms of:

	Group-A		
	(Multiple Choice Type Question	on) 1>	
. Choose the correct alterna	· ·	P102 30 mm	
81 68	togmos ma conjult		
(i) Select from the following theorems.	g an Al application that focuses on	proving mathematical	
a) Natural language proce	essing b) Theorer	n proving	
c) Vision processing	d) Expert s	systems	
Name the domain where Chess and Go are examples of AI applications.			
a) Vision processing	b) Natural	language processing	
c) Games	d) Expert s	systems	
	g a heuristic search algorithm that sed on an evaluation function.	focuses on expanding the	
a) Best-first search	till nangdaren at area b) Depth-f	irst search	
c) Breadth-first search	d) Hill clim	nbing	
iv) Identify from following t because it:	hat Hill climbing is prone to getting	g stuck in local optima	
a) Always chooses the be	st successor b) Can on	y move downhill	
c) Doesn't use heuristic in	· · · · · · · · · · · · · · · · · · ·	t use an evaluation function	
	hm that explores the search space		
a) Best-first search	b) Breadtl	n-first search	
c) Depth-first search	d) Hill clin	nbing	
Select a search algorithm that explores the search space by expanding the deepest unexpanded node			
a) Breadth-first search	b) Depth-	first search	

d) Hill climbing

d) Decision trees

b) Graphical representations

(viii)	Which Knowledge Representation technique us links to represent relationships between conce	p.c.3.	
	a) Frames c) Decision Trees Learning by induction defines:	d) Horn Clauses	
	a) Inferring rules from specific instancesc) Generating random hypothesesSelect the type of reasoning that focuses on ha	 b) Applying pre-defined rules directly d) Analyzing expert opinions andling imprecise or vague information. 	
	a) Probabilistic reasoningc) Certainty factor reasoningSelect from the following that is NOT a key con	d) Fuzzy logic reasoning	
	a) Soma c) Dendrite Select the function that is typically used to into	b) Axon d) Weights oduce non-linearity in artificial neurons.	
	a) Linear functionc) Identity functionIdentify the purpose of the activation function	d) Exponential function in an artificial neuron.	
	a) To perform arithmetic operationsc) To store dataChoose from the following advantages of general	d) To introduce non-linearity d) To adjust the learning rate etic algorithms.	
(xv)	a) Guaranteed global optimumc) Easy implementationSelect the primary function of the input layer	 b) Fast convergence d) Ability to handle complex search spain a neural network. 	aces
	a) Process datac) Receive input signals	b) Store weightsd) Perform computations	
		oup-B Type Questions)	3 x 5=15
2. [Define Natural Language Processing.		(3)
3. [Define local maximum in hill climbing algorithm	and how to overcome it.	(3)
4. [Discuss the key techniques that are used in sent	ence generation in NLP.	(3)
5. [Distinguish Artificial Neural Networks (ANNs) tr	aditional computing systems.	(3)
6.	Explain frame in Al with an example.		(3)
	Illustrate Structure of a Partitioned Network.	OR	(3)
		r oup-C r Type Questions)	5 x 6=30
7.			(5)

8.	Describe the concept of backpropagation in Artificial Neural Networks (ANNs) and its role in training multi-layer networks.	(5)
9.	Illustrate the applications of AI.	(5)
10.	Explain how Semantic Nets contribute to knowledge representation in Artificial Intelligence.	(5)
11.	Illustrate how neurons in an Artificial Neural Network (ANN) process information.	(5)
12.	Illustrate Means Ends Analysis with an example.	(5)
	OR Explain A* algorithm with an example.	(5)
