

BRAINWARE UNIVERSITY

Term End Examination 2018 - 19

Programme - Bachelor of Technology in Computer Science & Engineering

Course Name - Discrete Mathematics

Course Code - M201

(Semester - 2)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

(Multiple Choice Type Questions)

 $10 \times 1 = 10$

- 1. Choose the correct alternative from the following
- (i) If A is a nth order square matrix, then det(5A)=

a. $5[det(A)]^n$

b. 5[det(A)]

c. $5^n [det(A)]^n$

d. $5^n[det(A)]$

(ii) If A and B are non-singular square matrices, then (AB)⁻¹=

a. $A^{-1} B^{-1}$

b. AB⁻¹

c. A⁻¹ B

d. B-1 A-1

(iii) The inverse of the matrix $\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$ is

a.
$$\begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$$

b. $\begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}$

c. Does not exit

d. $\begin{pmatrix} -2 & 4 \\ -3 & 6 \end{pmatrix}$

(iv) Trace of a square null matrix is

a. 1

b. 0

 $c. \infty$

d. None of these

(v) Let N be the set of natural numbers and R be the relation in N defined as $R = \{(a, b) : a = b - 2, b > 6\}$. Then

a. $(2, 4) \in R$

b. $(8,7) \in R$

c. $(3, 8) \in R$

d. $(6, 8) \in R$

- (vi) The truth value of the statement $x^2 = x$ holds for all real values of x is
 - a. T

b. F

c. Neither T nor F

- d. None of these
- (vii) Contrapositive of " $\sim p \rightarrow q$ " is
 - a. $p \rightarrow q$

b. $\sim q \rightarrow \sim p$

c. $\sim q \rightarrow p$

- d. $q \rightarrow p$
- (viii) The Fibonacci sequence is
 - a. 0,1,2,3,5,8.....

b. 0,1,2,3,4,5,....

c. 1,1,2,3,5,8,.....

- d. 0,-1,3,-6,10,.....
- (ix) The solution of the recurrence relation $a_n = 2a_{n-1} + 1$, with $a_0 = 1$
 - a. 2¹

b. $2^{n}-2$

c. $2^{n}+1$

- d. $2^{n}-1$
- (x) The root of a binary tree is the vertex having degree
 - a. 1

b. 2

c. 3

d. 4

Group - B

(Short Answer Type Questions)

 $3 \times 5 = 15$

Answer any three from the following:

2. Write a short note on "Konigsberg Bridge Problem".

- [5]
- 3. Define Isomorphism in graph. Examine whether the following graphs are isomorphic or not.

[2+3]

- 4. Show that $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$ is a contradiction.
- [5]
- 5. Solve the following recurrence relation by using iterative method: $a_n=4(a_{n-1}-a_{n-2})$, [5] given $a_0=a_1=1$
- 6. Define adjacency matrix for a non-directed graph. Hence find the adjacency matrix for the following graph [5]

Page 2 of 4

Group - C

(Long Answer Type Questions)

 $3 \times 15 = 45$

Answer any three from the following:

- 7. (a) Prove that a complete graph with n number of vertices has exactly $\frac{n(n-1)}{2} \text{ edges.}$ [5]
 - (b) Construct a spanning tree of the following graph G by BFS and DFS: [5]

- (c) Show that $(p \wedge q) \vee (q \wedge r) \vee (p \wedge r)$ is a contingency. [5]
- 8. (a) Apply Kruskal's algorithm to find a shortest spanning tree of the following [6] graph:

- (b) Show that the statement formula A logically implies statement formula B: [5] $A: (q \rightarrow (p \land \sim p)) \rightarrow (r \rightarrow (p \land \sim p))$, $B: (r \rightarrow q)$
- (c) Show that a graph with at least one edge is 2- chromatic if it has no circuit of odd length. [4]
- 9. (a) Find by Prim's algorithm a minimal spanning tree from the following graph: [6]

- (b) Find the CNF(Conjunctive normal form) of the following statement $(p \lor q) \leftrightarrow (p \land q)$ [4]
- (c) Show that a graph G has a spanning tree if and only if G is connected [5]

- 10. (a) Find the inverse of the matrix $A = \begin{pmatrix} 2 & -3 & 4 \\ 1 & 0 & 1 \\ 0 & -1 & 4 \end{pmatrix}$ [5]
 - (b) Solve, by characteristic root method, the recurrence relation $a_n = 3a_{n-1} + 4a_{n-2}, a_0 = 0, a_1 = 5$. Hence find a_8 .
 - (c) Prove that the number of vertices in the binary tree is always odd. [4]
- 11. (a) Prove that, a simple graph with n number of vertices and k number of components can have maximum $\frac{(n-k)(n-k+1)}{2}$ number of edges.
 - (b) Show by truth table that the following statement formula is a tautology: [5] $\{(p \land \neg q) \rightarrow r\} \rightarrow \{p \rightarrow (q \lor r)\}$
 - (c) Using generating function solve the recurrence relation $a_n = a_{n-1} + n$, with $a_0 = 1$ [4]
