

BRAINWARE UNIVERSITY

Term End Examination 2018 - 19

Programme -Bachelor of Science (Honours) in Computer Science

Course Name -Algebra and Multivariable Calculus

Course Code - BCS203C

(Semester - 2)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

(Multiple Choice Type Questions) $10 \times 1 = 10$

- 1. Choose the correct alternative from the following:
- (i) The remainder when 3^{10} is divided by 7 is

a. 0

b. 1

c. 7

d. 4

(ii) For Z_8 , [2].[7] =

a. [14]

b. [6]

c. [9]

d. [1]

(iii) Number of edges in a complete graph with n-vertices is:

a. ${}^{n}C_{1}$

b. ⁿC₂

 $c. {}^{n}C_{3}$

d. ⁿC_n

(iv) If G is a tree with n vertices, then the number of edges of G are

a. n(n+1)

h n_1

c. n

d. n(n-1)

(v) If $f_{y}(a,b) = f_{y}(a,b) = 0$, then (a,b) is a

a. saddle point

b. extreme point

c. critical point

d. isolated point

e.

(vi) If
$$f(x, y) = x^2y$$
, then $df =$

a. $2x^2dx + dy$

b. x-2dy

c. x + dy 1

d. $2xydx + x^2dy$

(vii)
$$\int_{0}^{1} \int_{y}^{\sqrt{y}} dx dy =$$

a. $\frac{1}{2}$

b. $\frac{1}{e}$

c. $\frac{2}{3}$

d. $\frac{4}{3}$

(viii) The value of the triple integral
$$\iint_{0.5}^{1} \iint_{0}^{8} dx dy dz$$
 is

a. 25

b. 27

c. 1

d. 3

(ix) The general solution of
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0$$
 is

- a. $y = Ae^{-x} + Be^{-2x}$
- b. $y = e^{-x} + e^{-2x}$
- $c. \quad y = e^{-x}(A + Bx)$

d. none of these

(x) Integrating factor of the differential equation
$$\cos x \frac{dy}{dx} + y \sin x = 1$$
 is

a. $\tan x$

b. $\cos x$

c. $\sec x$

d. $\sin x$

Group - B

(Short Answer Type Questions)

 $3 \times 5 = 15$

Answer any three from the following:

2. State and prove Fermat's theorem.

[5]

[5]

- 3. Prove that a graph G has a spanning tree if and only if G is connected.
- [5]

4. If
$$u = \log_e(x^3 + y^3 + z^3 - 3xyz)$$
, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$.

[5]

5. Evaluate $\int_{0}^{2} \int_{0}^{z} \int_{0}^{x\sqrt{3}} \frac{x}{x^{2} + y^{2}} dy dx dz.$

[5]

6. Solve: $(\sin x \cos y + e^{2x})dx + (\cos x \sin y + \tan y)dy = 0$.

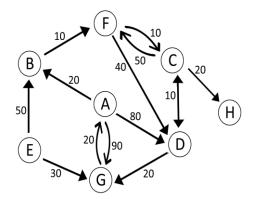
Group - C

(Long Answer Type Questions)

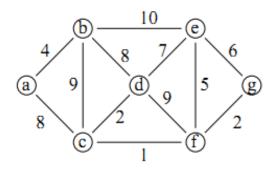
 $3 \times 15 = 45$

Answer any three from the following:

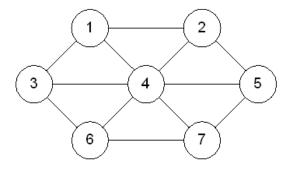
- 7. (a) Find the remainder when $1!+2!+3!+\cdots+50!$ is divided by 5. [5]
 - (b) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 y^2}} (x^2 + y^2) dy dx$ by changing to polar co-ordinates. [6]
 - (c) If $z = u^2 + v^3$ where $u = \sin xy$ and $v = y^2$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. [4]
- 8. (a) Find the maximum value of x^3y^2 subject to the constraint x + y = 1, using the method of Lagrange's multiplier. [7]
 - (b) Apply Dijkstra's method to find the shortest path and distance between the two vertices **A** & G in the given graph. [8]



- 9. (a) Apply the method of variation of parameters to solve the equation: [6] $\frac{d^2y}{dx^2} + 9y = \sec 3x$
 - (b) Find two minimal spanning tree from the following graph using Prim's and [9] Kruskal's algorithms.



- 10. (a) Solve the Diophantine equations: 15x+7y=111 [5]
 - (b) Evaluate $\iiint_V (x^2 + y^2 + z^2) dx dy dz$ where V is the volume of the cuboid bounded by the co-ordinate planes x=0, x=a, y=0, y=b, z=0, z=c
 - (c) Define Adjacency Matrix for a non-directed graph. Hence find the adjacency matrix for the following graph. [4]



- 11. (a) If $\phi(v^2 x^2, v^2 y^2, v^2 z^2) = 0$ where v is a function of x, y, z, show that $\frac{1}{x} \cdot \frac{\partial v}{\partial x} + \frac{1}{y} \cdot \frac{\partial v}{\partial y} + \frac{1}{z} \cdot \frac{\partial v}{\partial z} = \frac{1}{v}.$ [7]
 - (b) Evaluate $\iint dxdy$ over the domain bounded by $y = x^2$ and $y^2 = x$. [4]
 - (c) If gcd(a,b)=1, then prove that $gcd(a+b,a^2-ab+b^2)=1$ or 3 [4]
