

BRAINWARE UNIVERSITY

Term End Examination 2023
Programme – BCA-2018
Course Name – Discrete Structures
Course Code - BCA202
(Semester II)

Full Marks: 70

Time: 3:0 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- 1. Choose the correct alternative from the following:
- (i) The number of committees of 2 boys and 3 girls that can be formed out of 7 boys and 6 girls is, select the correct option
 - a) 21

b) 20

c) 420

d) 50400

For $A = \{-2, -1, 0, 1, 2\}$ and $f: A \to R$, f is defined as $f(x) = x^2 + 1$. Then which of the following is true, where $f(A) = \{f(x) : x \in A\}$. Select the correct option

a)
$$f(A) = \{5,2,1\}$$

b)
$$f(A) = \{5,2,10\}$$

c)
$$f(A) = \{5,8,10\}$$

d)
$$f(A) = \{7,8,10\}$$

- (iii) If n pigeon holes are occupied by n+1 pigeons, then at least _____ number of hole is occupied by more than one pigeon., select the correct option
 - a) 2
 - c) :

- b) 1
- d) None of these
- (iv) If A and B are sets and AU B= A ∩ B, then, Write the correct option
 - a) A = Φ

b) B = Φ

c) A = B

- d) none of these
- (v) Let R be a non-empty relation on a collection of sets defined by ARB if and only if $A \cap B = \emptyset$, then, write the correct option
 - a) R is reflexive and transitive
- c) R is an equivalence relation
- b) R is symmetric and not transitived) R is not reflexive and not symmetric
- (vi) Every vertex of a null graph is, Write the correct one
 - a) Pendant

b) Isolated

c) Odd

- d) None of these
- (vii) A vertex whose degree 1 is called, write the correct one
 - a) isolated vertex

b) pendant vertex

c) even vertex

d) none of these

Brain Rami	krishnapur Road, Dalassa, West Bengal-700125		3 17
Kolkal (viii	(600)		
	truth value of q is T then $\sim p \wedge q$ be		
(ix)	a) T c) Both T and F Let p: It is sunny afternoon and q: It is I statement 'It is not sunny afternoon and one	b) F d) None of these not today, then the symbolic for it is not hot today', Identify the	rm of the e correct
	a) $p \vee q$	b) $\neg p \lor q$	
	$(a) \neg p \land q$	$^{d} \neg p \land \neg q$	
(x)	For any positive integer m, Select the correct one	4	
	gcd(ma, mb) = m	b) $gcd(ma, mb) = ab$	
	c) $gcd(ma, mb) = m gcd(a, b)$	d) $gcd(ma, mb) = mlcm(a, b)$	b)
(xi)	xi) Let p: It is cold and q: It is raining, then the symbolic form of the statement 'It is not raining and it is not cold', Select the correct option		
(xii)	a) $\neg q \land p$ c) $q \land p$ The function $f : R \to R$ defined by $f(x)$ numbers. Then f is, Select the correct of	1	real
	a) surjective	b) injective	
(xiii)	c) bijective d) None of these		
	a) T c) Both T and F Let p be a proposition 'Anil is rich' and q be a proposition 'Ka 'Either Anil or Kanchan is rich', Select the correct one	b) F d) None of these nchan is poor'. Then the symbolic form of the	statement
	a) p∨¬q	b) ¬p∧q	
(š	c) pAq	d) none of these	
(xv)	Determine the number of subsets of a set of order four. a) 3	b) 6	,
	c) 16	d) 9	
	Group	В	
(Short Answer Type Questions)			x 5=15
	 Examine the following compound proposition is a Tautol (p → (q → p)) 	ogy (using truth table)	(3)
	 Examine the following compound proposition is a Tautol table)((p → q) ↔ (~ q → ~ p)) 	ogy (using truth	(3)

4. Calculate the degree of each vertices from the above Figure

5. Consider the group (Z, +). Let $H = \{2n: n \in Z\}$, show that H is a subgroup of Z.

(3)

Kolkala, West Bengal-700125

6. Illustrate that the identity elements (if it exists) of any algebraic structure is unique.

(3)

OR

Illustrate that the algebraic structure (N, -) where - denotes the binary operation of subtraction on Z, set of natural numbers, is neither associative nor commutative

(3)

Group-C

(Long Answer Type Questions)

- 5 x 8=40
- 7. Examine whether $(p \land q) \rightarrow (p \lor q)$ is a tautology or not (without using truth table)
- (5)

8. Let p: He is intelligent and q: He is tall be two propositions. State the following statements in symbolic from using p and q:

(5)

- (i) He is tall but not intelligent.
- (ii) He is neither tall nor intelligent.
- (iii) He is intelligent or he is tall.
- (iv) It is not true that he is intelligent or tall.
- (v) It is not true that he is not tall or not intelligent.
- 9. Illustrate that the function $f: R \to R$ is a function such that f(x) = 6x + 5 is one-one onto

(5)

- 10. Let Q {1} be the set of all rational numbers except 1 and the operation * on Q-{1}, defined by a*b=a+b-ab for all a, b from Q-{1}, then show that (Q-{1},*) is a group.
- (5)

Kolkala, West Bengal-700125 11. Let (G, \circ) and (G', *) be two groups and $\varphi: G \to G'$ be a homomorpism. Then (5) Deduce that: (i) $\varphi(e_G) = e_{G}$ $(\mathrm{ii})\varphi(\alpha^{-1})=\{\varphi(\alpha)\}^{-1}for\ all\ \alpha\in G$ (iii) if $a \in G$ and o(a) is finite then $o(\varphi(a))$ is a divisor of o(a)12. Illustrate that if $A \to B$ is one-one onto, then $f^{-1}: B \to A$ is also one-one onto. (5) 13. Compute the number of non-negative solutions to (5) x + y + z = 18 with the condition $x \ge 3$, $y \ge 2$ and $z \ge 1$ 14. Illustrate that (5) Let (G,o) be a group. A non empty subset H of G forms a subgroup of (G.o) iff $a,b \in H \Rightarrow a \circ b^{-1} \in H$ OR (i) Illustrate that every cyclic group is an abelian group. (5) (ii) The set if integer (Z, +) is a cyclic group of which the generator is 1.