

BRAINWARE UNIVERSITY

Term End Examination 2023 Programme - MCA-2022 Course Name – Formal Language and Automata Theory Course Code - MCA203 (Semester II)

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- Choose the correct alternative from the following:
- (i) select the correct one: A language can be generated from simple primitive language in a simple way if and only if
 - a) It is recognized by a device of infinite states
- b) It takes no auxiliary memory

c) All of the mentioned

- d) None of the mentioned
- (ii) Judge from the following options that halting problem be approximated or bounded in any way
 - a)) Yes, it can be bounded by a finite number of steps.
- b) Yes, it can be approximated with a probabilistic algorithm.
- c) No, it cannot be approximated or bounded in
- Only for certain types of Turing machines.
- (iii) Identify the following technique that can be used to prove that a language is non regular
 - a) Ardens theorem

b) Pumping Lemma

c) Ogden's Lemma

- d) None
- (iv) Choose the correct options Regular Expression for the language of words containing even number of a's is
 - a) (a+b)aba(a+b)

b) a+bbaabaa

c) (a+b)ab(a+b)

- d) (b+aba)
- (v) Inspect the correct option for function of the head in a Turing machine?
 - a) a) It reads and writes symbols on the tape
- b) It executes the instruc ons

c) It stores data

- d) It performs arithmetic operations
- (vi) Identify the following states from the correct options
 - a) Accept and Start

b) Accept and read

c) Accept and reject

d) Accept and write

Alamkiis West Bengal 100	l. b. aministic
(vii) Inspect the difference between a deterministic i	uring machine and a non-deterministic
 a) A determinis c Turing machine can only make one move at a time, while a non-deterministic Turing machine can make multiple moves at once. c) A deterministic Turing machine can only recognize regular languages, while a non-deterministic Turing machine can recognize any language. 	 b) A determinis c Turing machine can only perform simple arithmetic operations, while a non-deterministic Turing machine can perform complex operations. d) A deterministic Turing machine can only accept or reject an input, while a non-deterministic Turing machine can accept or reject an input with different probabilities.
(viii) Idetify the following options L = {aP p; } is prim	b) not regular
 a) regular c) accepted by DFA (ix) Identify from the following option that Finite state 	d) accepted by PDA
a) any grammarc) Both (a) and (b)(x) Identify the correct alternatives Any given transit	b) only context-free grammar d) only regular grammar
a) regular expression	b) DFSM
 c) NDFSM (xi) Identify the total number of states and transition will produce residue mod 3. 	d) NDFSM s required to form a moore machine that
a) 3 and 6	b) 3 and 5
 c) 2 and 4 (xii) Choose the correct alternatives: RR* can be express 	d) 2 and 4
a) R+	b) R-
c) R+ U R-	d) R
(xiii) Show that the following is not an example of finit	e state machine system?
 a) Control Mechanism of an elevator c) Traffic Lights (xiv) Show that ∑= {a, b, z} and A = {Hello, World}, E can be represented as: 	b) Combinational Locks d) Digital Watches 3= {Input, Output}, then (A*∩B) U (B*∩A)
a) {Hello, World, Input, Output, ε}	b) {Hello, World, ε}
 c) {Input, Output, ε} (xv) Choose from following which is a nonterminal syn 	d) {} nbol in a context-free grammar?
a) . a c) S	b) b d) None of the above
Group	
(Short Answer Ty	pe Questions) 3 x 5=15
 Illustrate DFA, NFA & Language. Show a DFA to accept strings of a's and b's starting w Show a DFA to accept string of 0's and 1's ending with Deduct useless symbols from the grammar with processor. AB b 	h the string 011. (3) ductions S -> AB CA, B -> BC AB, A -> a, C (3)
6. Compare the basic difference between 2-way FA and	TM. (3)
OR Discover a Turing Machine to recognize 0n1n2n	(3)
S to recognize oning	(3)

Brainware University
398, Ramkrishnapur Road, Barasal
Kalkata, West Bergal 700125
5 x 6=30

Group-C (Long Answer Type Questions)

7.	Explain the term formal language.	(5)
8.	Construct a Moore machine that takes strings comprising 0, 1, 2 and 3 as input (base 4	(5)
	number) whose decimal equivalent modulo 7 is given as output.	
9.	Discover a RE for all the strings of 0 and 1, but not containing the substring 001	(5)
10.	Analyze the following terms with example: (i) Ambiguous Grammar. (ii) Left Recursion	(5)
11.	Examine the concept of Universal Turing Machine	(5)
12.	Discover that the following grammar is ambiguous S->aSbS bSaS ε	(5)

Let G be the grammar S \rightarrow 0B | 1A, A \rightarrow 0 | 0S | 1AA, B \rightarrow 1 | 1S | 0BB. For the string 00110101, (5) Evaluate the leftmost and rightmost derivation.
