

BRAINWARE UNIVERSITY

Term End Examination 2023 Programme – MCA-2020/MCA-2021 Course Name – Design and Analysis of Algorithms Course Code - MCA204 (Semester II)

Full Marks: 60 Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

	words as far a	s practicable.]	
	Grou	ıp-A	
	(Multiple Choice Type Question)		
1.	Choose the correct alternative from the following	5.5	
(i)	Define the complexity the recurrence relation $T(n) = 8T(n/2) + n2$		
	a) O (n)	b) O (n2)	
	c) O (log2 n)	d) O (n3)	
(ii)	is		
	a) O (n)	b) O (n2)	
	c) O (2n)	d) None of these	
(iii)	Select the correct option:o (g(n)) is [Read as sr	nall oh of g (n)] is	
	a) asymptotically loose	b) asymptotically tight	
	c) same as Big Oh	d) None of these	
(iv)		steps to solve the problem	
	a) Seven	b) Four	
	c) Six	d) Two	
(v)	Tell the complexity of searching an element fro algorithm is		
	a) O(n log n)	b) O(log n)	
	c) O(n2)	d) O(n)	
(vi)	Report the case of Master's theorem tthat is an T(n)=0.5*T(n/2)+1/n?		
a) Case 3	b) Case 1	
) Master's theorem is not applicable	d) Case 2	

Mesi Ben	38.700 38.700	152 1828			
Meel	(vii)	The recurrence relation capturing the optimal t discs is.			
		a) $T(n) = 2T(n-2) + 2$	b) $T(n) = 2T(n-1) + n$		
		c) $T(n) = 2T(n/2) + 1$	d) $T(n) = 2T(n-1) + 1$		
	(viii)	Identify the result of the recurrences that fall user recurrence be given by T(n)=aT(n/b)+f(n) and f(n)=nc?	e	
		a) T(n) = O(nlogba)	b) T(n) = O(nc log n)		
		c) T(n) = O(f(n))	d) None of mentioned		
	(ix)	Predict the case of Master's theorem where th fall?	e recurrence relation of binary search will		
		a) 1	b) 2		
		c) 3	d) It cannot be solved using master's the	neorem	
	(x)	Decide the objective of tower of Hanoi puzzle.			
		a) To move all disks to some other rod by	b) To divide the disks equally among th	e three	
		following rules	rods by following rules		
		c) To move all disks to some other rod in	d) To divide the disks equally among the	ree rods	
		random order	in random order		
	(xi)	Predict the minimum number of moves require n disks is	ed to solve a tower of Hanoi problem with		
		a) 2n	b) 2n-1		
		c) n2	d) n2-1		
	(xii)	Focus the two main measures for the efficiency	y of an algorithm are		
		a) Processor and memory	b) Complexity and capacity		
		c) Time and space	d) Data and space		
	(xiii)	Predict the fact:Ω - notation provides an asymp	·		
		a) Upper bound	b) Lower bound		
		c) One that is sandwiched between the two	di		
		bounds	None of these		
	(xiv)	Calculate the time complexity of the expression	n f(n) = 6*2n + n7 using big-O notation is		
		a) O(2n)	b) O(n7)		
		c) O(n log2 n)	d) O(n)		
	(xv)	Calculate the average successful search time to 10 item is			
		a) 2.6	b) 2.8		
		c) 2.7	d) 2.9		
		c, 2.,	•		
		Gro	ир-В		
	(Short Answer Type Questions) 3				
	2 1	idea the following statement: Tower of Hanoi Pro	oblem can be solved using recursion.	(3)	
	 Judge the following statement: Tower of Hanoi Problem can be solved using recursion. Describe the algorithm of matrix chain problem. 			(3)	
	3. D	edict CDP to find clique number for the given gr	aph.	(3)	
	5. Report the optimal solution for the fractional Knapsack problem with capacity 50 is given below: w = {5, 7, 12, 23, 30} v = {30, 20, 100, 90, 160}			(3)	
	6. Compare P, NP, NP complete, NP hard classes.				
	b. C	ompare r, wr, wr complete, wr hard classes.	OR	(3)	
	Ε.	xplain asymptotic analysis.		(3)	
	L	piani asjinptotio analisi			

398, Ramkrishnapur Road Kolkata, West Bengal-

5 x 6=30

Group-C (Long Answer Type Questions)

7.	"ABC" Justify the matching algorithm weather sub-string found or not, If found give the position.	(5)
8.	The Book and Adick 301	(5)
9.	Evaluate the time complexity of merge sort using an example.	(5)
	Describe Knuth Morris Pratt (KMP) algorithm.	(5)
11.	Differentiate the step between merge and quick sort using a proper example.	(5)
12.	Consider the following optimal parameterization of a Matrix-Chain product whose sequence of dimensions is <2, 3, 4, 3>	(5)
	OR	
	Explain Floyd Warshall Algorithm to solve All Pair Shortest Path using a suitable example.	(5)