

BRAINWARE UNIVERSITY

Term End Examination 2021 - 22 Programme – Diploma in Computer Science & Engineering Course Name - Physics II **Course Code - DCSE202** (Semester II)

Time allotted: 1 Hrs.25 Min.		Full Marks : 70
	n the margin indicates full marks.]	
	Group-A	
(Multiple Choice Type Question)		1 x 70=70
Choose the correct alternative from the follo	wing:	
(1) A pendulum of length L supporting mass ss is doubled, the new time period is	M swings back and forth with time period P.	. If the ma
a) $\frac{1}{\sqrt{2}}P$	b) P	
c) $\sqrt{2}P$	d) 2P	
(2) Relation between force and acceleration	was first introduced by	
a) Issac Newton	b) Carl Friedrich Gauss	
c) Albert Einstein	d) Plank	
(3) A particle is thrown vertically upward wi	th a velocity 40 ms^{-1} from the ground. It will	reach the
a) 8 s	b) 4 s	
c) 20 s	d) 16 s	
(4) At a particular instant, acceleration of a b	ody is called	
a) instantaneous acceleration	b) instantaneous velocity	
c) instantaneous displacement	d) instantaneous speed	
(5) Magnitude of displacement from initial p	osition to final position is	
a) straight line	b) curved line	
c) circle	d) none of these	
(6) Displacement is a		
a) scalar quantity	b) vector quantity	
c) Derived quantity	d) none of these	

Page 1 of 6

b) 50 m s^{-2}

(7) A boy of mass 50 kg runs with a force of 100 N, his acceleration would be

a) 5000 m s⁻²

c) $_{150 \text{ m s}}^{-2}$

(6) SI WIII 101 101CE IS	
a) Kilograms	b) Newton
c) Joules	d) Acceleration
(9) Speed of truck is 40 m s ⁻¹ , after 10 seconds its sp	peed decreases to 20 m s ⁻¹ , its acceleration is
a) -1 m s^{-2}	b) -2 m s^{-2}
$^{\circ}$ - 4 m s ⁻²	$\frac{d}{5}$ m s ⁻²
(10) "Energy can neither be created nor be destroyed, r", this law is known as	but it can be changed from one form to anothe
a) kinetic energy	b) potential energy
c) conservation of energy	d) conservation principle
(11) A heavy truck has more momentum than a passe ruck	nger car moving at the same speed because the t
a) has greater mass	b) has greater speed
c) is not streamlined	d) has a large wheelbase
(12) Momentum is conserved in	
a) an elastic collision of two balls	b) an inelastic collision of two balls
c) the absence of an external force	d) all of these
(13) A gun recoiling when it is fired is an example of	•
a) conservation of momentum	b) conservation of angular momentum
c) conservation of energy	d) none of these
(14) A car traveling at a speed of 40 km/hr increases gy increases	its speed to 80 km/hr. As a result its kinetic ener
a) 2 times	b) 4 times
c) 8 times	d) none of these
(15) A thin uniform ring of mass M and radius R pass ane. Then its Moment of Inertia is	sing through its centre and perpendicular to its pl
a) $_{1/2}$ MR ²	b) MR^2
$^{\rm c)}_{\rm 3/2~MR}^{\rm 2}$	$^{\rm d)}$ 2 MR ²
(16) The energy possessed by a body due to its position	on is called
a) kinetic Energy	b) potential Energy
c) mechanical Energy	d) electrical Energy
(17) Joule is a unit of	
a) work	b) power
c) momentum	d) velocity
(18) When an object falls freely towards the ground,	then its total energy
a) increases	b) decreases
c) remains constant	d) first increases then decreases
(19) What happens to the body on which work is done	e
a) it loses energy	b) it gains energy
c) no change in the energy	d) first it loses then it gain
(20) A radio set of 60 watts runs for 50 hours. How m	nany units of electrical energy are consumed in k
a) 2 kWh	b) 3 kWh
c) 4 kWh	d) 6 kWh
(21) What is the smallest unit of power	

a) Watt	b) Kilowatt
c) Horse power	d) none of these
(22) A mass is revolving in a circle which is in the pation	plane of the paper. The direction of angular acceler
a) upward to the radius	b) towards the radius
c) tangential	d) at right angle to angular velocity
(23) How much time will be required to perform 52	0 J of work at the rate of 20 W
a) 24s	b) 16s
c) 20s	d) 26s
(24) The commercial unit of Energy is	
a) Watt	b) Watt-hour
c) Kilowatt-hour	d) Kilowatt
(25) When an object falls freely towards the ground	, then its total energy
a) increases	b) decreases
c) remains constant	d) first increases then decreases
(26) 1 Horse Power (HP) = Watt	
a) 446	b) 766
c) 746	d) 674
(27) Joule/second is related to	
a) Watt	b) Newton
c) Pascal	d) Torr
(28) In order to do work, energy is	
a) transferred or converted	b) used up
c) lost	d) lost or transferred
(29) What are the units of work	
a) kg x m/s	b) J
c) m/s	d) Watt
(30) What are the units of power	
a) Horsepower	b) Joules per second
c) Watts	d) all the choices are correct
(31) Unit of electric charge is	
a) Coulomb	b) Coulomb/sec
c) Volt	d) None of these
(32) Wheatstone bridge principle is generally applied	ed to
a) Resistance	b) charge
c) Voltage	d) current
(33) A wire of resistance 4Ω is stretched to twice	e its original length, its new resistance is
a) 8Ω	b) 1Ω
c) 16Ω	d) 12Ω
(34) The resistance of two lamps connected in a service will be in the ratio	ies across a battery is in the ratio 4:5. Their power
a) 4:5	b) 5:4
c) 16:25	d) 25:16

(35) A 100W bulb and a 200W bulb are design of their resistances is	gned to operate at 110V and 220V respectively. The ratio
a) 1:1	b) 1:2
c) 1:3	d) 1:4
(36) Ampere second could be the unit of	3) 111
a) power	b) conductance
c) energy	d) charge
(37) A galvanometer in series with a high res	, ,
a) an ammeter	b) a voltmeter
c) a watt-meter	d) none of these
(38) In order to increase range of ammeter, v	,
a) increased	b) decreased
c) unchanged	d) zero
(39) An ammeter should have res	,
a) infinite	b) very large
c) very low	d) none of these
(40) Heating effect produced by current is du	
a) collision of electrons	b) movement of electrons
c) resistance in electrons	d) lose of energy
(41) Product of voltage and current is known	
a) work done	
c) velocity	b) powerd) acceleration
•	
(42) Electromotive force of a battery can be of	
a) $E = IR$	b) $E = IR + I$
c) $E = IR + r$	d) $E = IR + Ir$
(43) Current produces magnetic effect due to	
a) mechanical energy	b) magnetic field
c) electrical field	d) chemical energy
(44) Devices that do not obey Ohm's law are	
a) ohmic devices	b) non-ohmic devices
c) electric devices	d) resistive devices
(45) Voltage of a device having resistance	e 5 Ω and current 4 A will be
a) 10 V	b) 15V
c) 20V	d) 25V
(46) Power can be represented in variety of w	vays as
a) V × I	b) I ² R
c) V ² /R	d) all of these
(47) Sunlight is directly converted into electr	ical energy by using
a) cells	b) solar cells
c) electric generator	d) electrical energy
(48) A conductor moves in a magnetic field.	The direction of the induced current obtained from
a) Laplace's law	b) Fleming's left hand rule
c) Biot savart's law	d) None of these
(49) Which instrument is used for converting	•
a) Electric generator	b) Electric motor
, 6	Page 4 of 6

c) Electric iron	d) Electric oven
(50) What is the unit of magnetic field	
a) Tesla	b) Faraday
c) Newton	d) Newton / meter
(51) Lenz's law is based on	
a) charge	b) mass
c) momentum	d) energy
(52) The resistance of two lamps is in the ratio 4:5. Their	power will be in the ratio
a) 4:5	b) 5:4
c) 16:25	d) 25:16
(53) What is the unit of magnetic field?	
a) Tesla	b) Faraday
c) Newton	d) Newton / meter
(54) A semiconductor in its purest form is called	
a) Insulator	b) Superconductor
c) Intrinsic semiconductor	d) Extrinsic semiconductor
(55) A semiconductor has temperature co-efficient of a	resistance.
a) Zero	b) Positive
c) Negative	d) None of these
(56) Bridge rectifier is an alternative for	
a) Full wave rectifier	b) Peak rectifier
c) Half wave rectifier	d) None of the mentioned
(57) The depletion region with in a p-n junction is reduce	ed when the junction has
a) Zero bias	b) Forward bias
c) Reverse bias	d) All of these
(58) A silicon p-n junction diode in forward biased condi	•
a) 0.1 V	b) 0.7 V
c) 1.7 V	d) 2.1 V
(59) When the diode is forward biased, it is equivalent to	•
a) An off switch	b) An on switch
c) A high resistance	d) None of these
(60) In He-Ne laser neon atoms get energy	,
a) on collision with He atoms	b) from chemical reactions
c) from electrical pumping	d) from optical pumping
(61) In lasing action, the spontaneous emission does not	
a) the number of atoms present in the excited state	b) the intensity of the incident light
c) both intensity and number of atoms	d) none of these
(62) The wavelength of of He-Ne laser is	
a) 632.8 nm	b) 600 nm
c) 532.8 nm	d) 500 nm
(63) The ratio of He to Ne in a He-Ne laser is of the orde	er of
a) 1:15	b) 1:1
c) 1:10	d) 5:1
(64) In a He-Ne laser, the laser transition takes place in	,
a) He only	b) Ne only
c) Ne first, then in He	d) He first, then in Ne
(65) The process of population inversion is to increase the Page	

- a) excited state b) ground state c) intermediate state d) excited state and ground state (66) The life time of atoms in the excited state is normally a) 10^{-6} s b) 10^{-8} s c) 10^{-2} s d) 10^{-5} s (67) Light which has a wide band of wavelength is called a) coherent b) incoherent c) infrared d) microwave (68) Hydrogen atom does not emit X-rays because a) its energy levels are too close to each other b) its energy levels are too far apart c) it is too small in size d) it has a single electron (69) In characteristic X-ray emission kβ line is due to transition of electron from atomic shell a) K to L b) M to K d) N to L
- c) N to K

(70) Equation of thermo emf is $E = at + bt^2$. The notations carry their usual meanings. Value of temperature of inversion is

c) $-\frac{a}{2b}$ d) $\frac{a}{2b}$