

BRAINWARE UNIVERSITY

Term End Examination 2021 - 22 **Programme – Bachelor of Computer Applications Course Name – Discrete Structures Course Code - GEBS201** (Semester II)

ıll Marks : 60
Į

[The figure in the margin indicates full marks.]

Group)-A	
(Multiple Choice)	Type Question)	1 x 60=60
Choose the correct alternative from the following:	,	
(1) Let p: It is cold and q: It is raining, then the syr or it is not raining' is	mbolic form of the statement 'It is cold	
a) $P \vee q$	b) $\neg p \lor q$	
c) $\neg p \land q$	d) $p \vee \neg q$	
(2) Let p be a proposition 'He is intelligent' and q symbolic form of the statement 'He is intelligent		
a) $p \vee q$	b) ¬ <i>p</i> ∧ <i>q</i>	
c) $p \wedge q$	d) none of these.	
(3) For the statement p and q $\neg (p \lor q)$ is		
a) $\neg p \land \neg q$	b) ¬p∨¬q	
c) <i>P</i> ∨ <i>q</i>	d) none of these.	
$(4) p \lor (p \land q) =$		
a) p	b) q	
c) <i>P</i> \(q \)	d) none of these	
$(5) p \rightarrow q =$		
(5) $p \rightarrow q \equiv$ a) $\neg q \lor \neg p$ c) $\neg p \lor q$	b) ¬p ∧ qd) p ∨ q	
c) ¬ <i>p</i> ∨ <i>q</i>	d) $P \vee q$	

(6) If the truth value of p and q are F and F respectively then the truth value of $\neg p \rightarrow \neg q$

is

a) T b) F

c) both T and F d) None of these

(1) If $p \leftrightarrow q \equiv (p \to q) \land r$ then r is	
a) $p \rightarrow q$	b) ¬₽
c) $q \rightarrow p$	d) ¬q
$(8) \neg (p \lor q) \lor (p \land \neg q) =$	
a) ¬p	b) <i>P</i>
c) ¬q	d) None of these .
(9) The proposition $p \wedge (q \wedge \neg q)$ is a	
a) contradiction	b) Tautology
c) an argument	d) none of these .
(10) Contrapositive of $\neg p \rightarrow q'$ is	
a) $p \rightarrow q$	b) $\neg q \rightarrow \neg p$
c) $\neg q \rightarrow p$	d) $q \rightarrow \neg p$
(11) Let p: 'It is sunny afternoon 'and q: 'It is hot today' proposition ¬p∧¬q can be written as	. Then the following
a) It is not sunny afternoon and it is not hot today.	b) It is false that It is not sunny afternoon or it is not hot today.
c) It is false that It is sunny afternoon or it is hot today.	d) None of these.
(12) The negation of the statement 'No one wants to	buy my house' is
a) All want to buy my house	b) Some one wants to buy my house
c) Every one wants to buy my house	d) None of these .
(13) 'Any proposition'∨ 'a tautology'	
a) The proposition	b) tautology
c) contradiction	d) none of these
(14) If ${}^{2n}C_3$: ${}^{n}C_2 = 44:3$ then the value of <i>n</i> is	
a) 6	b) 5
c) 2	d) 7
(15) The number of three digit number that can be for	ormed from the digits 1,3,5,7 is,
a) 24	b) 6
c) 4	d) none of these
(16) In how many ways 7 different beads can be arra	
a) 250	b) 300
c) 360	d) 350
(17) The generating function for the sequence $<1,-1,$	
a) $(1-x)^{-1}$	b) $(1+x)^{-1}$
c) $(1+2x)^{-\frac{1}{2}}$	d) $(1-2x)^{-\frac{1}{2}}$
(18) If $a_n = a_{n-1} + 9$, $n \ge 1$ and $a_0 = 5$ then $a_n =$	
a) 9+5n	b) 5+9n
c) 9n	d) 5 <i>n</i>

c) subset	d) complement of a set	
(31) What is the base case for the inequality $7^n > n^3$.	, where $n = 3$?	
a) 652 > 189	b) 42 < 132	
c) 343 > 27	d) 42 ≤ 431	
(32) If $f(x-2) = 2x^2 + 3x - 5$ then $f(-1) =$		
a) 0	b) 1	
c) -1	d) 2	
(33) The function $f: R \to R$ defined by $f(x) = x^2$, where Then f is	eR is the set of all real numbers	
a) surjective	b) injective	
c) bijective	d) None of these	
(34) If $\phi(x-2) = 2x^2 + 3x - 5$ then $\phi(x) =$		
a) $2x^2 + 11x + 9$	b) $2x^2 - 11x + 9$	
c) $x^2 + 11x + 9$	d) none	
(35) Let a and b any two positive integers. Then		
a) $gcd(a,b) = lcm(a,b)$	b) $gcd(a,b)lcm(a,b) = ab$	
c) $gcd(a,b)lcm(a,b) = 1$	d) $gcd(a,b)lcm(a,b) = a+b$	
(36) If $32 \equiv a \pmod{7}$. Then the value of a is-		
a) 10	b) 11	
c) 12	d) 13	
(37) If $gcd(a,b) = c$, then $\frac{a}{c}$ and $\frac{b}{c}$ are		
a) both prime	b)	
	both composite	
c) relatively prime to each other	d) None of these	
(38) The $gcd(81,135)$ is		
a) 3	b) 9	
c) 27	d) 81	
(39) The $lcm(81,135)$ is		
a) 10935	b) 2187	
c) 3645	d) 405	
(40) The set of all real numbers under usual addition 2.36 is:	formed a group. Then the inverse of	
a) 2.36	b) -2.36	
c) 2.4	d) -2.4	
(41) The inverse of the element $-i$ in the multiplicative group $\{-1,1,-i,i\}$, where $i^2=-1$		
a) <i>i</i>	b) -i	
c) 1	d) -1	
(42)		

The identity element in the multiplicative group {-	1, 1, -1, 1, where $i = -1$
a) <i>i</i>	b) - <i>i</i>
c) 1	d) -1
(43) A monoid $(M,+)$ is called a group if	
a) $a+b=b+a=e$	b) $a + (b+c) = (a+b)+c$
c) $a+b=b+a\forall a,b\in M$	d) $a+b \in M, \forall a,b \in M$
(44) A group of three element is:	
a) Always non-abelian	b) Always abelian
c) Sometimes abelian	d) Always non-cyclic
(45) Let $(G, .)$ be a group and a has the inverse b then a	$b^{-1} = ?$
a) e	b) a ²
c) a	d) b ²
(46) The number of elements in the group $(Z_3,+)$ is	
a) 1	b) 3
c) 4	d) 6
(47) The inverse of the element [1] in the additive group	Z_3
a) [1]	b) [2]
c) [0]	d) None of these
(48) If \circ denotes permutation multiplication, then the value	ue of (1 2) o (1 4)
a) (4 1 2)	b) (1 4 2)
c) (4 2)	d) (4 1)
(49) Let a be an element in a group with order 5. Then the	evalue of a^{2020}
a) a	b) a ²
c) a ⁴	d) e
(50) Let a be an element in a group with order 10. Then the	the order of the element a^7
a) 10	b) 70
c) 1	d) Cannot be determined from the given data
(51) Which of the following is not an abelian group:	
a) (Q,+)	b) (Z,+)
c) $(\mathbb{Z}_3,+)$	d) S₅
(52) A subgroup H of a group G is normal if for all $x \in G$	and $h \in H$
a) $xhx^{-1} \in H$	b) $xhx^{-1} \in G$
c) $xh^{-1} \in H$	d) $x^{-1}h \in H$
(53) In a Boolean algebra B, if $a+b=b$ then $a.b=?$	
a) a	b) b
c) a'	d) Cannot determined from the given data

(54) In a Boolean algebra B, $(a+b)'=?$		
a) a'+ b'	b) (a.b)'	
c) a'.b'	d) I	
(55) In a Boolean algebra B, $0' = ?$		
a) <i>I</i>	b) 0	
c) I'	d) 0"	
(56) Arithmetical minus (-) is a binary operation on		
a) set of all integers	b) set of positive integers	
c) set of negative integers	d) none	
(57) A groupoid (G,\circ) is a semi-group if for all a,b,c in G		
a) $a \circ b = b \circ a$	b) $a \circ a = a$	
c) $(a \circ b) \circ c = (b \circ c) \circ a$	d) $a \circ (b \circ c) = (a \circ b) \circ c$	
(58) Which one of the following groupoid is semi-group		
a) (Z,+)	b) (Z,-)	
c) (R,÷)	d) None	
(59) In the group $Z_4 = \{[0],[1],[2],[3]\}$ under addition $[3]+[2]=$		
a) [5]	b) [0]	
c) [1]	d) [2]	
(60) An edge whose two end vertices coincide is called		
a) ring	b) adjacent edge	
c) loop	d) none	
-		