BRAINWARE UNIVERSITY

Term End Examination 2021 - 22 Programme – Master of Science in Mathematics Course Name – Applied Numerical Analysis Course Code - MSCMC402 (Semester IV)

Time allotted : 1 Hrs.15 Min. Full Marks : 60

[The figure in the margin indicates full marks.]

Group-A

(Multiple Choice Type Question) 1 x 60=60

Choose the correct alternative from the following :

ble (8) Which of these is used by the Adam-Bashforth method? a) Newton's method b) Frobenious covariant c) Frobenious norm d) Lagrange polynomial (9) Runge-Kutta method has a truncation error, which is of the order a) h^2 b) c) h^4 d) None of these (10) The ordinary differential equations are solved numerically by? a) Euler method b) Taylor method c) Runge-Kutta method d) All of these (11) Consider the initial value problem $y' = x(y + x) - 2$, $y(0) = 2$. Use Euler's method with step sizes $h = 0.3$ to compute approximations to $y(0.6)$ is equals to a) 0.953 b) 0.0953 c) 0.909 d) -0.953 (12) $rac{dy}{dx} = f(x, y), y(x_0) = y_0, y^{n+1}(x) = y_0 + \int_{x_0}^{x} f(x, y^n) dx$ a) Taylor's series method b) Picard's method c) Euler's method d) modified Euler's method (13) $\frac{dy}{dx} = \frac{x}{y}$, y(0) = 1. Find step of Picard's method for y(1) is a) $1/2$ b) 1 c) 3.2 d) 2 (14) $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$, then $y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_n + hf(x_n, y_n))]$ is known as a) Taylor's series method b) Euler's method c) Euler's modified method d) Runge-Kutta method (15) Error in modifed Euler's method is a) $0(h^2)$ b) $0(h^3)$ c) $0(h^4)$ d) $0(h^5)$ (16) Milne's corrector formula is a) $y_{n+1} = y_n + \frac{h}{2}(y'_{n-1} + 4y'_{n} + 4y'_{n+1})$
b) $y_{n+1} = y_{n-1} + \frac{h}{2}(y'_{n-1} + 4y'_{n} + y'_{n+1})$ c) $y_{n+1} = y_n + \frac{4h}{2}(y'_{n-1} + 4y'_n + 4y'_{n+1})$ d) None of these

(17) How many steps does the fourth-order Runge-Kutta method use?

a) Two steps b) Five steps

 $\partial y/\partial n$ =f is representation of

-
- c) Taylor series d) Fourier series
- a) Laurent series b) McLaurin series

(43)

The region in which the following partial differential equation

$$
x^3 \frac{\partial^2 u}{\partial x^2} + 27 \frac{\partial^2 u}{\partial y^2} + 3 \frac{\partial^2 u}{\partial x \partial y} + 5u = 0
$$

acts as parabolic equation is

a)
$$
x > \left(\frac{1}{12}\right)^{1/3}
$$

b) $x < \left(\frac{1}{12}\right)^{1/3}$
c) d) $(1)^{1/3}$

For all values of x

$$
\begin{aligned}\n &\text{(12)}\\
&\text{(12)}\\
&\text{(12)}\\
&\text{(12)}\n \end{aligned}
$$

(44) Heat equation is

a)
$$
\frac{\partial u}{\partial x} = c^2 \nabla^2 x^2
$$

\nb) $\frac{\partial u}{\partial y} = \frac{1}{c^2} \nabla^2 t^2$
\nc) $\frac{\partial u}{\partial t} = c^2 \nabla^2 u$
\nd) $\frac{\partial u}{\partial t} = c^2 \nabla^2 y^2$

(45)

The solution of $\frac{\partial u}{\partial x} = 36 \frac{\partial u}{\partial t} + 10u$ if $\frac{\partial u}{\partial x} (t = 0) = 3e^{-2x}$ using the method of separation of variables, is

a)
$$
-\frac{3}{2}e^{-2x}e^{-t/3}
$$

\nb) $3e^{x}e^{-t/3}$
\nc) $\frac{3}{2}e^{2x}e^{-t/3}$
\nd) $3e^{-x}e^{-t/3}$

(46)

Solve the differential equation $5\frac{\partial u}{\partial x} + 3\frac{\partial u}{\partial y} = 2u$ using the method of separation of variables if $u(0, y) = 9e^{-5y}$

a) $\frac{17}{9e^{5}}$ ^x_e-5y
b) $\frac{13}{9e^{5}}$ _z-5y c) $\frac{17}{9e^{-5}} \times \frac{1}{5} \times \frac{1}{e^{-5}y}$ d) $\frac{13}{9e^{-5}} \times \frac{13}{e^{-5}y}$

(47)

The solution of one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ exists if

- a) Both LHS & RHS are constants b) RHS is constant
- c) LHS is constant d) Always exists
-

(48)

The ends of a bar at $x=0$ and $x=L$ are kept at zero temperature. The bar is subjected to an initial temperature $u(x,0) = \sin \frac{\pi x}{L}$, the temperature distribution is given by $u(x,t)=$

a)
$$
\sin \frac{\pi x}{L} e^{-\frac{\alpha^2 x^2 t}{L}}
$$

\nb) $\cos \frac{\pi x}{L} e^{-\frac{\alpha^2 x^2 t}{L}}$
\nc) $\sin \frac{\pi x}{L} e^{\frac{\alpha^2 x^2 t}{L}}$
\nd) $\cos \frac{\pi x}{L} e^{\frac{\alpha^2 x^2 t}{L}}$

(49)

Consider an infinite bar (both sides extended to infinity) and the initial condition is $u(x=0) = f(x)$ ($-\infty < x < \infty$), the temperature function will be $u(x,t) =$

a)
$$
e^{k^2C^4} \Big[A e^{ikx} + B e^{-ikx} \Big]
$$

\nb) $e^{-kC^4} \Big[A e^{ikx} + B e^{-ikx} \Big]$
\nc) $e^{-k^2C^4} \Big[A e^{ikx} + B e^{-ikx} \Big]$
\nd) $e^{-k^2C^4} \Big[A e^{ikx} + B e^{-ikx} \Big]$

(50)

$$
G(x,t) = \begin{cases} a+b\log t & \text{if } 0 < x < t \\ c+d\log t & \text{if } t < x < 1 \end{cases}
$$
 is a Green's function for $xy'' + y' = 0$ subject to y being bounded as x tends to 0 a

and $y(1) = y'(1)$ if

a)
$$
a=b=c=d=1
$$

b) $a=c=1, b=d=0$
c) $a=c=0, b=d=1$
d) $a=b=c=d=0$

$$
(51)
$$

Solution of $\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2}$ where $y\left(\frac{\pi}{2}, t\right) = y_x(0, t) = 0$ and $y(x, 0) = \cos 5x$ is a) $e^{-25t} \sin 5x$ b) $e^{-25t} \cos 5x$ c) $e^{-5t} \cos 25x$ d) $e^{-5t} \sin 25x$

(52)

Heat equation in cylindrical coordinates (ρ, ϕ, z) is

a)
$$
\frac{\partial^2 u}{\partial \phi^2} + \frac{1}{\rho} \frac{\partial u}{\partial \phi} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \rho^2} + \frac{\partial^2 u}{\partial z^2} = \frac{1}{k} \frac{\partial u}{\partial t}
$$

\nb) $\frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \phi^2} + \frac{\partial^2 u}{\partial z^2} = \frac{1}{k} \frac{\partial u}{\partial t}$
\nc) $\frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \phi^2} + \frac{\partial^2 u}{\partial z^2} = \frac{1}{k} \frac{\partial u}{\partial t}$
\nd) None of these

(53)

If the solution of the BVP $u_x + u_y = 0$, $x \in (0, \pi)$, $y \in (0, \pi)$, $u(x,0) = u(x,\pi) = u(0,y) = 0$ satisfies the condition $u_x(x,y) = \sin y$, then the value of $u\left(x,\frac{\pi}{2}\right)$ is a) $(\pi/2)(e^x - e^{-x})(e^x - e^{-x})$ b) $\pi(e^x - e^{-x})/(e^x + e^{-x})$ c) $(\pi/2)(e^x + e^{-x})(e^x + e^{-x})$ d) $(e^x - e^{-x})/(e^x + e^{-x})$

(54) Householder transformation reduces a symmetric matrix into

(55)

Find the sum of the Eigenvalues of the matrix

$$
A = \begin{bmatrix} 3 & 6 & 7 \\ 5 & 4 & 2 \\ 7 & 9 & 1 \end{bmatrix}.
$$

a) 7 b) 8 c) 9 d) 10

(56)

All the four entries of the 2 × 2 $P = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$ matrix ε Eigen values is zero. Which of the following statements is tr

a)
$$
p_{11}p_{22} - p_{12}p_{21} = -1
$$

\nb) $p_{11}p_{22} - p_{12}p_{21} = 1$
\nc) $p_{11}p_{22} - p_{12}p_{21} = 0$
\nd) $p_{11}p_{22} + p_{12}p_{21} = 0$
\n(57)

If
$$
A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 5 \end{bmatrix}
$$
, then the Eigen values of A^{-1} are

a)
2,2,5
b)

$$
\frac{1}{2}, \frac{1}{2}, \frac{1}{5}
$$

c)
 $\frac{1}{5}, \frac{1}{3}, 1$
d)
1,3,5

$$
(58)
$$

Let $A = \begin{bmatrix} 4 & 2 \\ 5 & 7 \end{bmatrix}$, then the eigenvector associated with the do a) $\begin{bmatrix} 0.4 \\ 1 \end{bmatrix}$ b) $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 \\ 0.4 \end{bmatrix}$ d) $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$

(59)

