

BRAINWARE UNIVERSITY

Term End Examination 2021 - 22 Programme – Master of Science in Mathematics Course Name – Stochastic Processes Course Code - MSCME407 (Semester IV)

Time allotted: 1 Hrs.15 Min.		Full Marks : 60
[The figure in t	he margin indicates full marks.]	
	Group-A	
(Multiple Choice Type Question) Choose the correct alternative from the following:		1 x 60=60
(1) The condition for independence of two	events A and B is	
a) $P(A \cap B) = P(A)P(B)$	b) $P(A+B) = P(A)P(B)$	
c) $P(A-B)=P(A)P(B)$	d) $P(A \cap B) = P(A)P(B \setminus A)$	(A)
(2) When p=1, for M/M/1/N queuing system	m, expected number of customers in the	system are
a) N/2	b) N/6	
c) N	d) None of these.	
(3) On a certain day, number of customers is ce are 12,the number of customers waits		ner in servi
a) 10	b) 8	
c) 20	d) None of these	
(4) In queue description M/M/1, the number	r of servers are	
a) 1	b) M	
c) 2	d) None of these	
(5) The departure and arrivals in queuing sy the arrival and departure distribution are	· · · · · · · · · · · · · · · · · · ·	ely M/M/1
a) Both Markovian	b) Binomial.	
c) General.	d) None of these	
(6) There are N inventories in the system, or placing the inventories. This process is	•	ned with re
a) The pure birth process.	b) The pure death process.	

d) None of these

c) The birth death process.

(7) The variance of a random variable x is

a)	${\{E(x)\}}^2$	b)	$E(x^2)$		
c)	$E(x^2) - \{E(x)\}^2$	d)	None of these		
a) c)	A coin is tossed .The events {H}, {T} are mutually exclusive dependent events If $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$, $P(A \cup B) = \frac{1}{2}$, then $P(A) = \frac{1}{3}$, then $P(A) = \frac{1}{3}$.	d)	independent events None of these A) is		
	$\frac{3}{4}$		4/3		
c)	$\frac{1}{4}$	d)	$\frac{1}{3}$		
(10)	The probability of any event \boldsymbol{A} satisfies				
a)	$P(A) \ge 1$	b)	P(A) < 0		
c)	$0 \le P\left(A\right) \le 1$	d)	None of these		
(11)	A random variable X has the following p.d.f $f(x)$ =		-2 < x < 2, then $P(2X+3>5)$ is elsewhere		
a)	1	b)	$\frac{1}{2}$		
c)	$\frac{1}{4}$	d)	$\frac{3}{4}$		
(12)	The middle value of an ordered array of numbers	is tł	ne		
c)	Mode Median Number of times each value engage is called value.	d)	Mean Mid-point		
	Number of times each value appears is called valurange		frequency		
	mode		standard deviation		
(14)	14) The distribution for which mean and variance are equal is				
	Poisson		Normal		
	Binomial The withdrawal of items from certain in ventory w	-	Exponential out refilling in queueing systems can		
	pe stated as	1.)	The man death manes		
a)	The pure birth process.	b)	The pure death process.		
c)	The birth death process.	d)	None of these .		
(16) The arrival of customer (with no departure) in system, in queueing theory can be stated as					
a)	The pure birth process.	b)	The pure death process.		

c) The birth death process.

- d) None of these.
- (17) For a process if v_i denotes the rate of transition from one state to another state, then a state is called instantaneous if
 - a) $V_i = 0$

b) $V_i \rightarrow \infty$

c) $V_i = -\infty$

d) none of the above

- (18) The birth and death process is a
 - a) continuous time Markov chain

b) discrete time Markov chain

c) discrete state Markov chain

- d) none of the above
- (19) A continuous time Markov chain is said to be regular, if,
 - a) it's with probability 1, the number of transitio ns in any finite length of time is finite.
- b) it's with probability 0, the number of transitio ns in any finite length of time is finite.
- c) it's with probability 1, the number of transitio ns in any finite length of time is infinite.
- d) none of the above

(20)

The number of recurrent classes in the transition matrix

a) 0

b) 1

c) 2

- d) 3
- (21) If the coefficients $\{\lambda_j\}$ and $\{\mu_j\}$ are called the birth and death rates respectively process is said to be pure birth process if
 - a) $\mu_{j} = 0$

b) $\mu_{j} = 1$

c) $\lambda_i = 0$

- d) $\lambda_i = 1$
- (22) In the long run, the state probabilities become 0 & 1
 - a) In no case

b) In same cases

c) In all cases

- d) Cannot say
- (23) If a matrix of transition probability is of order nXn, then the number of equilibrium equations
 - a) n

b) n-1

c) n+1

- d) n+2
- (24) In a matrix of transition probability, the element a_{ii} , where i=j is a
 - a) Gain

b) Loss

c) Retention

- d) None of the above
- (25) In a matrix of transition probability, the probability values should add up to one in each

	b) Column
c) Diagonal	d) All of the above
(26) Service mechanism in a queuing system is charact	terized by
a) Server's behaviour	b) Customer behaviour
c) Customers in the system	d) All of the above
(27) A calling population is considered to be infinite w	hen
a) all customers arrives at once	b) arrivals are independent of each other
c) arrivals are dependent on each other	d) all of the above
(28) The calling population is assumed to be infinite w	hen
a) Arrivals are independent of each other	b) Capacity of the system is infinite
c) Service rate is faster than arrival rate	d) All of the above
(29) Priority queue discipline may be classified as	
a) Finite or infinite	b) Limited or unlimited
c) Pre-emptive or non-pre-emptive	d) All of the above
(30) To compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π compute the steady state distribution must solve (in addition to sum of π).	
a) $\pi A = 1$ c) $\pi A^t = 1$	b) $\pi A = 0$
c) $\pi A^t = 1$	d) None of these
(31) Which of the following is not a key operating char	racteristics apply to queuing system?
a) Utilization factor	b) percent idle time
, c ::::::::::::::::::::::::::::::::::	- /
c) average time spent waiting in the system and q ueue	d) None of the above
c) average time spent waiting in the system and q	d) None of the above
c) average time spent waiting in the system and q ueue(32) Two unbiased coins are tossed. Then the probabil	d) None of the above ity of obtaining at least one tail is
c) average time spent waiting in the system and q ueue(32) Two unbiased coins are tossed. Then the probabil	d) None of the above ity of obtaining at least one tail is
c) average time spent waiting in the system and q ueue(32) Two unbiased coins are tossed. Then the probabil	d) None of the above ity of obtaining at least one tail is
 c) average time spent waiting in the system and q ueue (32) Two unbiased coins are tossed. Then the probabil a) 3/4 	d) None of the above ity of obtaining at least one tail is b) $\frac{1}{2}$ d) none of these.
 c) average time spent waiting in the system and q ueue (32) Two unbiased coins are tossed. Then the probabile a) 3/4 c) 1/4 (33) A bag of 45 marbles contains 20 red, 15 blue, and 	d) None of the above ity of obtaining at least one tail is b) $\frac{1}{2}$ d) none of these.
 c) average time spent waiting in the system and q ueue (32) Two unbiased coins are tossed. Then the probabile a) 3/4 c) 1/4 (33) A bag of 45 marbles contains 20 red, 15 blue, and ndomly selecting 12 from the bag and having 3 red 	d) None of the above ity of obtaining at least one tail is b) $\frac{1}{2}$ d) none of these. I 10 yellow. What is the probability of rad, 4 blue, and 5 yellow.
 c) average time spent waiting in the system and q ueue (32) Two unbiased coins are tossed. Then the probabile a) 3/4 c) 1/4 (33) A bag of 45 marbles contains 20 red, 15 blue, and and and and and having 3 real 0.0 	d) None of the above ity of obtaining at least one tail is b) 1/2 d) none of these. d 10 yellow. What is the probability of rad, 4 blue, and 5 yellow. b) 0.0587 d) 0.0136
 c) average time spent waiting in the system and q ueue (32) Two unbiased coins are tossed. Then the probabile a) 3/4 c) 1/4 (33) A bag of 45 marbles contains 20 red, 15 blue, and ndomly selecting 12 from the bag and having 3 real 0.0 c) 0.0923 	d) None of the above ity of obtaining at least one tail is b) 1/2 d) none of these. d 10 yellow. What is the probability of rad, 4 blue, and 5 yellow. b) 0.0587 d) 0.0136
 c) average time spent waiting in the system and q ueue (32) Two unbiased coins are tossed. Then the probabile a) 3/4 c) 1/4 (33) A bag of 45 marbles contains 20 red, 15 blue, and ndomly selecting 12 from the bag and having 3 re a) 0.0 c) 0.0923 (34) A set of all possible outcomes of an experiment is 	d) None of the above ity of obtaining at least one tail is b) 1/2 d) none of these. d 10 yellow. What is the probability of ra d, 4 blue, and 5 yellow. b) 0.0587 d) 0.0136 s called
 c) average time spent waiting in the system and q ueue (32) Two unbiased coins are tossed. Then the probabile a) 3/4 c) 1/4 (33) A bag of 45 marbles contains 20 red, 15 blue, and ndomly selecting 12 from the bag and having 3 re a) 0.0 c) 0.0923 (34) A set of all possible outcomes of an experiment is a) Combination 	d) None of the above ity of obtaining at least one tail is b) 1/2 d) none of these. d 10 yellow. What is the probability of ra d, 4 blue, and 5 yellow. b) 0.0587 d) 0.0136 s called b) Sample point d) Compound event
 c) average time spent waiting in the system and q ueue (32) Two unbiased coins are tossed. Then the probabile a) 3/4 c) 1/4 (33) A bag of 45 marbles contains 20 red, 15 blue, and ndomly selecting 12 from the bag and having 3 re a) 0.0 c) 0.0923 (34) A set of all possible outcomes of an experiment is a) Combination c) Sample space (35) The probability of getting at least one of the follotop in rolling of an unbiased die once is a) 1 	d) None of the above ity of obtaining at least one tail is b) 1/2 d) none of these. d 10 yellow. What is the probability of ra d, 4 blue, and 5 yellow. b) 0.0587 d) 0.0136 s called b) Sample point d) Compound event
 c) average time spent waiting in the system and q ueue (32) Two unbiased coins are tossed. Then the probabile a) 3/4 c) 1/4 (33) A bag of 45 marbles contains 20 red, 15 blue, and and and another the bag and having 3 red a) 0.0 c) 0.0923 (34) A set of all possible outcomes of an experiment is a) Combination c) Sample space (35) The probability of getting at least one of the following of an unbiased die once is 	d) None of the above ity of obtaining at least one tail is b) 1/2 d) none of these. d 10 yellow. What is the probability of rad, 4 blue, and 5 yellow. b) 0.0587 d) 0.0136 s called b) Sample point d) Compound event wing events, points 'six' or 'one' on the

(36) If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{1}{4}$, then the value of $P(A \cup B) = \frac{1}{4}$		
a) $\frac{6}{7}$	b) $\frac{3}{7}$	
c) ₁	d) $\frac{7}{12}$	
(37) The probability that a leap year selected at random	n will contain 53 Sundays is	
a) $\frac{2}{7}$	b) $\frac{3}{7}$	
c) $-\frac{4}{7}$	d) . 5 7	
(38) If $E(x) = 2$ and $E(z) = 4$, then $E(z - x) = ?$		
a) 2	b) 6	
c) 0	d) Insufficient data	
(39) The mean of Binomial distribution $B(n, p)$ (when probability of success) is	re n and p are the number of trials and	
a) $\frac{n}{p}$	b) 0	
c) np	d) 1	
(40) The mean of a Poisson distribution with parameter	er μ is	
a) <i>µ</i>	b) μ ²	
c) - μ	d) $- \mu^2$	
(41) $Var(2X+3)=?$		
a) $2Var(X)$	b) 4Var(X)	
c) $2Var(X)+3$	d) None of these	
(42) The mean of exponential distribution with param	eter λ is given as	
a) 1	b) 1	
-, <u>-</u>	$\frac{1}{\lambda^2}$	
2) 4	d) 2	
a) $\frac{1}{\lambda}$ c) $\frac{1}{\lambda^3}$	α) λ	
(43) Normal Distribution is applied for		
a) Continuous Random Distribution	b) Discrete Random Variable	
c) Irregular Random Variable	d) Uncertain Random Variable	
(44) Binomial distribution deals with		
a) Continuous random variable	b) Discrete random variable	
c) Continuous & Discrete random variable	d) None of the mentioned	
(45) In Poisson distribution mean is variance.		
a) Greater than	b) Lesser than	

c)	Equal to	d)	Does not depend on
(46)	Stochastic processes are		
a)	Strict sense stationary process	b)	Wide sense stationary process
c)	All of the mentioned	d)	None of the mentioned
(47)	Gaussian process is a		
a)	Wide sense stationary process	b)	Strict sense stationary process
c)	If Gaussian process is a wide sense stationary process then it will also be strict sense stationary process.	d)	None of the mentioned
(48)	One of the condition for a counting process $\{N \ (t) \}$	t), t	≥ 0 }, is said to be Poisson process
a)	N(0)=0	b)	N(0)=1
c)	N(1)=0	d)	N(1)=1
(49)	$Cov(X, Y)$ {covariance of (X, Y) is}		
a)	E(XY)	b)	E(XY) - E(X)
c)	E(XY) - E (X) E (Y)	d)	E(XY) + E(X)E(Y)
(50)	If $R_{XY} = 0$ then X and Y are		
a)	independent	b)	orthogonal
c)	independent & orthogonal	d)	Statistically independent
(51)	The collection of all the sample functions is refer	red 1	to a as
a)	Ensemble	b)	Assemble
c)	Average	d)	Set
(52)	The random process $X(t)$ and $Y(t)$ are said to be in	inde	pendent, if $f_{XY}(x_1, y_1 : t_1, t_1)$ is =
a)	$f_X\!\left(x_1:t_1\right)$	b)	$f_Y(y_1:t_2)$
c)	$f_X(x_1:t_1)f_Y(y_1:t_2)$	d)	0
(53)	A stationary continuous process $X\left(t\right)$ with auto autocorrelation-ergodic or ergodic in the autocorrelation		
a)	$\frac{1}{2T} \int_{-T}^{T} X(t)X(t+\tau)dt = R_{xx}(\tau)$	b)	$\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^{1}X(t)X(t+\tau)dt=R_{xx}(\tau)$
c)	$\frac{1}{2T} \int_{-\infty}^{\infty} X(t)X(t+\tau)dt = R_{xx}(\tau)$	d)	$\int_{-T}^{T} X(t)dt=0$
(54)	Two processes X(t) and Y(t) are statistically inde	pend	lent if
a)		b)	
	$F_{x,y}(x_1,x_2,,x_N,y_1,y_2,,y_M) =$		$f_{x,y}(x_1,x_2,,x_N,y_1,y_2,y_M) =$
	$F_x(x_1, x_2,, x_N) F_y(y_1, y_2,, y_M)$		$f_x(x_1, x_2,, x_N) f_y(y_1, y_2,, y_M)$
c)	•	d)	•
,		/	

$$F_{x,y}(x_1,...,x_N,y_1,...,y_M,t_1,...,t_N,t_1, f_{x,y}(x_1,...,x_N,y_1,...,y_M,t_1,...,t_N,t_1,...,t_N,t_1,...,t_N)$$

$$F_{x,y}(x_1,...,x_N,y_1,...,y_M,t_1,...,t_N,t_1, f_{x,y}(x_1,...,x_N,y_1,...,y_M,t_1,...,t_N,t_1,...$$

(55)A process stationary to all orders N = 1, 2, ---- &. For $X_i = X(\underline{t}_i)$ where $\underline{i} = 1, 2, -----N$ is called

a) Strict-sense stationary

b) wide-sense stationary

c) Strictly stationary

d) independent

(56) Consider a random process X(t) defined as $X(t) = A \cos wt + B \sin wt$, where w is a Constant and A and B are random variables which of the following it's a condition for its stationary.

a) E(A) = 0, E(B) = 0

b) E (AB) \neq 0

c) $E(A) \neq 0$; $E(B) \neq 0$

d) A and B should be independent

(57)

X(t) is a wide source stationary process with E[X(t)] = 2 and $R_{XX}(\tau) = 2$ and

 $R_{xx}(\tau) = y + e^{-0.1|x|}$. Find the mean and variance of $\dot{\int} X(t)dt$

a) 2, 20 [10e^{-0.1}-9]

b) 1, 10 [10e-0.1 + 9]

c) 0, 5 [20e-0.1-9]

d) 0, 10 [10e-0.1 + 9]

(58) Let X(t) and Y(t) be two random processes with respective auto correlation functions $R_{xx}(\tau)$ and $R_{yy}(\tau)$. Then $|R_{xy}(\tau)| =$

a) $= \sqrt{R_{xx}(0)R_{yy}(0)}$

b) $\geq \sqrt{R_{xx}(0)R_{yy}(0)}$

 $^{c)} \leq \sqrt{R_{xx}(0)R_{yy}(0)}$

 $^{\rm d)} > \sqrt{R_{\rm xx}(0)R_{\rm W}(0)}$

(59) $\mathsf{R}_{\mathsf{xx}}(\tau) = ?$

E[X2(t)]

c) $\int_{0}^{\infty} X^{2}(t)dt$

d) $E[X(t) \square X(t+\tau)]$

(60)If X1, X2,.... are independent and identically distributed with mean m, then $P\left\{\lim_{n\to\infty} (X_1 + X_2 + + X_n) / n = \mu\right\} = ?$

a) 0

b) 1

c) 2

d) None of these