

BRAINWARE UNIVERSITY

Term End Examination 2021 - 22 Programme – Bachelor of Technology in Computer Science & Engineering Course Name – Discrete Mathematics Course Code - PCC-CS404 (Semester IV)

Time allotted: 1 Hrs.25 Min.	Full Marks : 70			
[The figure in the margin indicates full marks.]				
Group-	A			
(Multiple Choice T	ype Question) 1 x 70=70			
Choose the correct alternative from the following:				
(1) According to De-Morgan's law $[A \cup (B \cap C)]^c$				
a) $A^{\sigma} \cap (B \cap C)$	b) $A^{\circ} \cap (B^{\circ} \cup C^{\circ})$			
c) $A^c \cup (B^c \cap C^c)$	d) none of these			
(2) An one-to-one function is also known as				
a) injective function	b) surjective function			
c) bijective function	d) None of these			
(3) Let R be a symmetric and transitive relation on a set A	a. If			
a) R is reflexive, then a partial order	b) R is reflexive, then a equivalence relation			
c) R is not reflexive, then a equivalence relation	d) None of these			
(4) Two finite sets have m and n element respectively. The total number of subsets of first set is 2 ti mes the total number of sub sets of the second set. Then the possible values of m and n respectively are				
a) 5, 2	b) 4, 7			
c) 7, 6	d) 2, 5			
(5) The relation { (1,2), (1,3), (3,1), (1,1), (3,3), (3,2)} on {1, 2, 3, 4} is				
a) Reflexive	b) Symmetric			
c) Transitive	d) Asymmetric			
(6) Which is the correct statement about the function $f:\mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = 2x$?				
a) $f(x)$ is one-to-one and onto	b) $f(x)$ is one-to-one but not onto			
c) $f(x)$ is not one-to-one but onto	d) $f(x)$ is neither one-to-one nor onto			
(7) How many reflexive relations are possible on a set with n elements?				
a) $2^{n(n+1)/2}$	b) $2^{n(n-1)}$			

c) 2ⁿ

(8) If $S = \{\emptyset\}$ then power set of S is _____.

d) 2^{n+2}

a)	{ν}	U	V
c)	$\{\emptyset, \{\emptyset\}\}$	d)	None of these
(9) A	A relation on a non-empty set A is a		
a)	a subset of A	b)	a subset of AXA
c)	function on A	d)	None of these
(10) _I	$f f(x) = tan^{-1}(x) \text{ and } g(x) = tan(x), \text{ then } (gof)(x) =$		
a)	$tan^{-1}xtan(x)$	b)	$tan^{-1}xcot(x)$
c)	x	d)	$tan^{-1}xsin(x)$
(11) 7	The number of elements in the power set of the set {a,		\
a)	2	b)	4
c)	6	d)	8
	A survey shows that 70% of the Indian like mango whoth mango and apples, then	ere	es 82% like apple. If x% of Indian like
a)	<i>x</i> = 52	b)	52 ≤ <i>x</i> ≤ 70
c)	<i>x</i> = 70	d)	$70 \le x \le 82$
(13) 1	$fX \cup \{3,4\} = \{1,2,3,4,5,6\}$ then which of the following is to	nue	
a)	Smallest set $X = \{1, 2, 5, 6\}$	b)	
		1\	Small est set $X = \{1,2,3,5,6\}$
	Smallest set $X = \{1,2,3,4\}$	a)	Greatest set $X = \{1,2,3,4\}$
(14) 1	The class $[-11]$ in Z_s is equal to		
a)			[4]
c)		d)	None of these
	Which of the following is a countably infinite set?	1 \	D
a)	2 {2}		R No such set exist
	f gcd of two positive integers is 3 and the product is 5		
(10) 1 a)			12
c)			18
	The number of elements in the set Z_n is	,	
a)	$r_2 - 1$	b)	n
c)	r2 + 1	d)	1
(18) I	Let R be a reflexive relation of a finite set A havir	ıg ı	n elements and let there
b	e m ordered pairs in R. Then		
a)	$m \ge n$	b)	$m \le n$
c)	m = n	d)	None of these
	Let R be a relation in N defined by $R = \{(1+x, 1+x^2) : x \le 5, \}$ following is false?	<i>x</i> ∈	N which of the
a)	Domain of $R = \{2,3,4,5,6\}$	b)	Range of $R = \{2,5,10,17,26\}$
	R contains 5 elements		R is reflexive
(20) 7	The number of even prime is		
a)	1	b)	2
c)	0	d)	infinitely many
(21)	D 5	. –	,

The domain of the function f , where $f(x) = \frac{1}{ x +1}$ is		
a) R	b) R\{1}	
c) R\{-1,1}	d) None of these	
(22) The number of relation from a set of m elements to a set of n	elements is	
a) <i>mn</i>	b) 2 ^{mm}	
c) 2 ^{m+m}	d) None of these	
(23) Range of f , where $f(x) = \sin \frac{1}{x}$ is		
a) [-1, 1]	b) R	
c) [-1,1]\{0}	d) R\{0}	
(24) Let R be the relation over the set $N \times N$ and is defined by $(a,b) R(c,d) \Rightarrow a+d=b+c$ then R is		
a) Reflexive only	b) Symmetric only	
c) Transitive only	d) An equivalence relation	
(25) The inverse of the function $f: N \to N$ defined by $f(x) = 2$	r is	
a) $g(x) = \frac{x}{2}, x \in \mathbb{N}$	$b) f(x) = 2x, x \in N$	
c) invertible	d) Does not exist	
(26) We write $a \equiv b \pmod{m}$ is $m \text{ divides } a - b \text{. If } x + 3 \equiv 0 \pmod{m}$	od 5), then $x =$	
a) 3	b) 5	
c) 2	d) 0	
(27) The inverse of $\frac{7^x - 7^{-x}}{7^x + 7^{-x}}$ is	,	
a) $\frac{1}{2}\log_7\frac{1+x}{1-x}$	b) $\log_7 \frac{1-x}{1+x}$	
c) $\log_{\frac{1}{2}} \frac{1-x}{1+x}$	d) $\frac{1}{2} \log_e \frac{1+x}{1-x}$	
(28) The number of three digit number that can be formed	from the digits 1,3,5,7 is,	
a) 24	b) 6	
c) 4	d) 64	
(29) If n pigeonholes are occupied by n+1 pigeons, then at y more than one pigeon.	least number of hole is occupied b	
a) 2	b) 1	
c) 3	d) None of these	
(30) The least number of people 4 of whom will have same birthday of the week is,		
a) 18	b) 42	
c) 28	d) 22	
(31) A farmer buys 3 cows, 2 pigs, and 4 hens from a man umber <i>m</i> of choices that the farmer has:	who has 6 cows, 5 pigs, and 8 hens. The n	
a) 2000	b) 14000	
c) 200	d) 1400	
(32) If ${}^{n}C_{1}$, ${}^{n}C_{2}$ and ${}^{n}C_{3}$ are in A.P., the value of n is		
a) 6	b) 7	

c) 8	d) 4
(33) The number of words of 5 different letters that can be BOX and 3 letters from the word TABLE is	formed by taking 2 letters from the word
a) 120	b) 30
c) 3600	d) None of these
(34) The number of distinct permutations that can be form AL is	ed from all the letters of the word UNUSU
a) 5040	b) 840
c) 210	d) 35
(35) Find the number of combinations of 4 objects, A , B , C	C, D, taken 3 at a time.
a) 3	b) 4
c) 16	d) 12
(36) Find the number <i>m</i> of committees of 5 with a given claple.	nairperson that can be selected from 12 peo
a) 495	b) 3960
c) 4950	d) None of these
(37) Find the number of ways a coin can be tossed 6 times heads occur in a row.	so that there is exactly 3 heads and no two
a) 22	b) 20
c) 7	d) None of these
$(38) \neg (p \lor q) \lor (p \land \neg q) \equiv$	
a) ¬p	b) <i>P</i>
c) ¬q	d) <i>q</i>
(39) The statement $[\sim p \ v \ (p \rightarrow q)] \rightarrow \sim p \text{ is a}$	
a) Tautology	b) Contingency
c) Contradiction	d) None of these
(40) The truth value of the statement $x^2 = x$ holds for all real	al values of x is
a) T	b) F
c) Neither T nor F	d) none of these
(41) If p:"anil is rich" and q:"kanchan is poor" then the sy Kanchan is rich" is	mbolic from the statement "Either Anil or
a) $P \vee q$	 b) p ∨¬q d) ¬(p ∨q)
c) $\neg p \lor q$	d) $\neg (p \lor q)$
(42) If $p \leftrightarrow q = (p \to q) \land r$, then r is	
a) $P \rightarrow q$	b) ¬₽
c) $q \rightarrow p$	d) ¬q
(43) The negation of "All students live in dormitories" is	
a) All students do not live in dormitories.	b) No student live in dormitories.
c) One student does not live in dormitories.	d) Some students do not live in dormitories.
(44) Let P:IfSahil bowls, Saurabh hits a century. ,Q: If Raj f P is true and Q is false then which of the following c	<u> </u>
a) Raju bowled and Sahil got out on first ball	b) Raju did not bowled
c) Sahil bowled and Saurabh hits a century	d) Sahil bowled and Saurabh got out
(45) " $\forall x \in \mathbb{R}$ such that $x^2 = 4$ " is equivalent to	
a)	b) Some real numbers have square 4

If x is real number then $x^2 = 4$	
c) Square of no real number is 4	d) None of these
(46) Inverse of " $-p \rightarrow q$ " is	
a) $p \rightarrow q$	b) $\neg p \rightarrow \neg q$
c) $p \rightarrow \neg q$	b) $\neg p \rightarrow \neg q$ d) $\neg q \rightarrow \neg p$
(47) $p \rightarrow q$ is logically equivalent to	
a) ¬p ∨ ¬q	b) p∨ ¬q
c) ¬p ∨ q	d) ¬p ∧ q
(48) If $P(n): 3^n < n!$, $n \in \mathbb{N}$, then $P(n)$ is true	
a)	b)
for $n \ge 6$	for $n \ge 7$
c) for $n \ge 3$	d) for all n
(49) By induction hypothesis, the series $1^2 + 2^2 + 3^2 +$	$\dots + p^2$ can be proved equivalent to
a) $\frac{p(p+1)}{2}$	b) $\left(\frac{p(p+1)}{2}\right)^2$
c) $\frac{p(p+1)}{4}$	d) $\frac{p(p+1)(2p+1)}{6}$
(50) Let * be a binary operation on a non-empty set S . Then $(S,*)$) is called a
a) groupoid	b) semi-group
c) monoid	d) group
(51) If (G,.) is a group with identity e such that $a^2 = e$, $\forall a \in$	G , then G is
a) an abelian group	b) a non-abelian group
c) non-associative	d) none of these
(52) The inverse of the element — <i>i</i> in the multiplicative group	$\{-1,1,-i,i\}$, where $i^2 = -1$
a) i	b) - <i>i</i>
c) ₁	d) -1
(53) The identity element in the multiplicative group {-1,1,-	
a) i	b) - <i>i</i>
c) 1	d) -1
(54) A monoid $(M,+)$ is called a group if	,
a) $a+b=b+a=e$	b) $a + (b + c) = (a + b) + c$
c) $a+b=b+a \forall a,b \in M$	d) $a+b \in M, \forall a,b \in M$
(55) The order of the additive group (Z,+)	
a) 1	b) Finite but more than 1
c) Infinite	d)
(56) If $(G_{,\cdot})$ be a group then $(ab)^{-1} = ?$	(Z,+) does not formed a group
	1.)
a) $a^{-1}b$	b) ab ⁻¹
c) Page 5	d) 5 of 7

$a^{-1}b^{-1}$	$b^{-1}a^{-1}$
(57) The number of elements in the symmetric group S	3 is
a) 1	b) 3
c) 6	d) 9
(58) The units of the ring $(Z_6, +, .)$ are	
a) 1,3	b) ī,5
c) 1,4	d) None of these
(59) The order of the element $\bar{5}$ in the group $(Z_{35},+)$ is	ş-
a) 1	b) 5
c) 6	d) 7
(60) Inverse of the element $\bar{5}$ in the group $(Z_7,+)$ is-	
a) į	b) 2
c) 3	d) 5
(61) Which of the following is not a subfield of the	e set R of all real numbers?
a) <i>Q</i>	b) _{Q[√3]}
c) $Q[\sqrt{-3}]$	d) _{Q[√5]}
(62) In a Boolean algebra B, $(a+b)'=?$	
a) α'+ b'	b) (a.b)'
c) a'.b'	d) <i>I</i>
(63) Let $f: G \to G'$ be a homorphism and e is the ident $f(a^{-1}) = ?$	ity element of G. Then
a) f(a)	b) $[f(a)]^{-1}$
c) e	d) f(e)
(64) If G is a tree with n vertices, then the number	of edges of G are
a) n	b) (n-1)
c) $n(n+1)$	d) n(n-1)
(65) Every vertex of a null graph is	
a) Pendant	b) Isolated
c) Odd	d) none of these
(66) A vertex whose degree 1 is called	
a) isolated vertex	b) pendant vertex
c) even vertex	d) none
(67) The degree of an isolated vertex is	1) 1
a) 0	b) 1
c) 2	d) none
(68) The maximum number of edges of a simple g	
a) 2	b) 7
c) 5	d) 6
(69) If the origin and terminus of a walk coincide	then it is a

a) path
b) open walk
c) circuit
d) closed walk
(70) A self-loop cannot be included in a

b) circuit

d) path

a) walk

c) trail

Page 7 of 7