

BRAINWARE UNIVERSITY

Term End Examination 2021 - 22 Programme – Bachelor of Technology in Computer Science & Engineering

Course Name – Discrete Mathematics Course Code - PCC-CS404 (Semester IV)

Time allotted: 1 Hrs.15 Min. Full Marks: 60

[The figure in the margin indicates full marks.]

60=60

	croup-A Dice Type Question)	1 x
Choose the correct alternative from the following:	nce Type Question)	1 X
(1) According to De-Morgan's law $[A \cup (B \cap C)]^c$		
a) $A^c \cap (B \cap C)$	b) $A^{\circ} \cap (B^{\circ} \cup C^{\circ})$	
c) $A^c \cup (B^c \cap C^c)$	d) none of these	
(2) An one-to-one function is also known as		
a) injective function	b) surjective function	
c) bijective function	d) None of these	
(3) Let R be a symmetric and transitive relation on a set A. If		
a) R is reflexive, then a partial order	b) R is reflexive, then a equivalence relation	
c) R is not reflexive, then a equivalence relation	d) None of these	
(4) Two finite sets have m and n element respectively. The total number of second set. Then the possible values of m and n respectively are	f subsets of first set is 2 times the total number of sub sets of the	ne
a) 5, 2	b) 4, 7	
c) 7, 6	d) 2, 5	
(5) The relation $\{(1,2), (1,3), (3,1), (1,1), (3,3), (3,2)\}$ on $\{1, 2, 3, 4\}$ is		
a) Reflexive	b) Symmetric	
c) Transitive	d) Asymmetric	
(6) Which is the correct statement about the function $f:\mathbb{Z}\to\mathbb{Z}$ defined by f		
a) $f(x)$ is one-to-one and onto	b) $f(x)$ is one-to-one but not onto	
c) $f(x)$ is not one-to-one but onto	d) $f(x)$ is neither one-to-one nor onto	
(7) How many reflexive relations are possible on a set with n elements?		
a) $2^{n(n+1)/2}$	b) $2^{n(n-1)}$	
c) 2 ⁿ	d) 2^{n+2}	
(8) If $S = \{\emptyset\}$ then power set of S is		
a) {Ø}	b) Ø	
c) {ø,{ø}}	d) None of these	
(9) A relation on a non-empty set A is a		
a) a subset of A	b) a subset of AXA	
c) function on A	d) None of these	
(10) If $f(x) = \tan^{-1}(x)$ and $g(x) = \tan(x)$, then $(gof)(x) =$		
a) $tan^{-1}xtan(x)$	b) $tan^{-1}xcot(x)$	
c) x	d) $tan^{-1}xsin(x)$	
(11) The number of elements in the power set of the set {a, b} is		
a) 2	b) 4	
c) 6	d) 8	

(12) A survey shows that 70% of the Indian like mango wheres 82% like ap	pple. If x% of Indian like both mango and apples, then
a) $x = 52$	b) 52 ≤ <i>x</i> ≤ 70
c) $x = 70$	d) $70 \le x \le 82$
(13) If $X \cup \{3, 4\} = \{1, 2, 3, 4, 5, 6\}$ then which of the following is true	
a) Smallest set $X = \{1,2,5,6\}$	b) Smallest set X= {1,2,3,5,6}
c) Smallest set $X = \{1,2,3,4\}$	d) Greatest set $X = \{1,2,3,4\}$
(14) The class [-11] in Z_s is equal to	
a) [1]	b) [4]
c) [0]	d) None of these
(15) Which of the following is a countably infinite set?	1) P
a) Z c) {2}	b) Rd) No such set exist
(16) If gcd of two positive integers is 3 and the product is 54, then the lcm	
a) 17	b) 12
c) 6	d) 18
(17) The number of elements in the set Z_{π} is	
a) n-1	b) <i>n</i>
c) 12 + 1	d) 1
(18) Let R be a reflexive relation of a finite set A having n elements a	nd let there
be m ordered pairs in R. Then	
a) $m \ge n$	b) <i>m</i> ≤ <i>n</i>
c) $m = n$	d) None of these
(19) Let R be a relation in N defined by $R = \{(1+x,1+x^2) : x \le 5, x \in N\}$ which of	
following is false?	
a) Domain of $R = \{2,3,4,5,6\}$	b) Range of $R = \{2,5,10,17,26\}$
c) R contains 5 elements	d) R is reflexive
(20) The number of even prime is	
a) 1 c) 0	b) 2d) infinitely many
,	d) infinitely many
(21) The domain of the function f , where $f(x) = \frac{1}{ x +1}$ is	
a) R	b) R\{1}
c) R\{-1,1}	d) None of these
(22) The number of relation from a set of m elements to a set of n elements is	
a) <i>mn</i>	b) 2 ^{mm}
c) 2 ^{m+n}	d) None of these
(23) Range of f , where $f(x) = \sin \frac{1}{x}$ is	
a) [-1, 1]	b) R
c) [-1,1]\{0}	d) R\{0}
(24) Let <i>R</i> be the relation over the set $N \times N$ and is defined by $(a,b) R(c,d) \Rightarrow a+d=b+c$ then <i>R</i> is	
a) Reflexive only	b) Symmetric only
c) Transitive only	d) An equivalence relation
(25) The inverse of the function $f: N \to N$ defined by $f(x) = 2x$ is	
a) $g(x) = \frac{x}{2}, x \in \mathbb{N}$	$b) f(x) = 2x, x \in N$
c) invertible	d) Does not exist
(26) We write $a \equiv b \pmod{m}$ is m divides $a - b$. If $x + 3 \equiv 0 \pmod{5}$, then $x = 0$	
a) 3	b) 5
c) 2	d) 0
(27) The inverse of $\frac{7^{x} - 7^{-x}}{7^{x} + 7^{-x}}$ is	

	a) $\frac{1}{2} \log_7 \frac{1+x}{1-x}$	b) $_{1 \circ g_7} \frac{1-x}{1+x}$		
	c) $\log_{\frac{1}{2}} \frac{1-x}{1+x}$	d) $\frac{1}{2} \log_e \frac{1+x}{1-x}$		
(28)	(28) The number of three digit number that can be formed from the digits 1,3,5,7 is,			
	a) 24	b) 6		
	c) 4	d) 64		
(29)	If n pigeonholes are occupied by n+1 pigeons, then at leastnun			
	a) 2 c) 3	b) 1d) None of these		
(30)	The least number of people 4 of whom will have same birthday of the			
()	a) 18	b) 42		
	c) 28	d) 22		
(31)	A farmer buys 3 cows, 2 pigs, and 4 hens from a man who has 6 cows, $\frac{1}{2}$, 5 pigs, and 8 hens. The number m of choices that the farmer has:		
	a) 2000	b) 14000		
(22)	c) 200	d) 1400		
(32)	If ${}^{n}C_{1}$, ${}^{n}C_{2}$ and ${}^{n}C_{3}$ are in A.P., the value of n is			
	a) 6	b) 7		
(33)	c) 8 The number of words of 5 different letters that can be formed by taking	d) 4 g 2 letters from the word ROV and 3 letters from the word TARLE		
	is	g 2 letters from the word BOX and 3 letters from the word TABLE		
	a) 120	b) 30		
	c) 3600	d) None of these		
(34)	The number of distinct permutations that can be formed from all the le			
	a) 5040	b) 840		
(35)	c) 210 Find the number of combinations of 4 objects, A, B, C, D, taken 3 at a	d) 35		
(33)	a) 3	b) 4		
	c) 16	d) 12		
(36)	Find the number m of committees of 5 with a given chairperson that can	an be selected from 12 people.		
	a) 495	b) 3960		
	c) 4950	d) None of these		
(37)	Find the number of ways a coin can be tossed 6 times so that there is e			
	a) 22 c) 7	b) 20 d) None of these		
(38)	$\neg (p \lor q) \lor (p \land \neg q) \equiv$	d) Ivole of these		
, ,		1) 7		
	a) ¬p	b) P		
(20)	c) ¬q	d) 4		
(39)	The statement $[\sim p \ v \ (p \rightarrow q)] \rightarrow \sim p$ is a a) Tautology	b) Contingency		
	c) Contradiction	d) None of these		
(40)	•	,		
	The truth value of the statement $x = x$ noids for all real values of x is a) T	b) F		
	c) Neither T nor F	d) none of these		
(41)	If p:"anil is rich" and q:"kanchan is poor" then the symbolic from the			
	a) $p \vee q$	b) <i>p</i> ∨¬ <i>q</i>		
	c) $\neg p \lor q$	d) $\neg (p \lor q)$		
(42)	If $p \leftrightarrow q \equiv (p \rightarrow q) \land r$, then r is			
	a) $p \rightarrow q$	b) ¬P		
	c) $q \rightarrow p$	d) ¬q		
(43)	The negation of "All students live in dormitories" is			
	a) All students do not live in dormitories.	b) No student live in dormitories.		
	c) One student does not live in dormitories.	d) Some students do not live in dormitories.		
	Let P:IfSahil bowls, Saurabh hits a century. ,Q: If Raju bowls , Sahil g the following can be true?	ets out on first ball. Now if P is true and Q is false then which of		

a) Raju bowled and Sahil got out on first ballc) Sahil bowled and Saurabh hits a century	b) Raju did not bowledd) Sahil bowled and Saurabh got out
(45) " $\forall x \in \mathbb{R}$ such that $x^2 = 4$ " is equivalent to	
a) If x is real number then $x^2 = 4$	b) Some real numbers have square 4
c) Square of no real number is 4	d) None of these
(46) Inverse of " $-p \rightarrow q$ " is	1) 7) 7
a) $P \rightarrow q$ c) $P \rightarrow \neg q$	b) $\neg p \rightarrow \neg q$ d) $\neg q \rightarrow \neg p$
(47) $p \rightarrow q$ is logically equivalent to	u) 12 7 2
a) ¬p ∨ ¬q	b) p∨ ¬q
a) P √ q c) ¬p ∨ q	d) ¬p ∧ q
(48) If $P(n): 3^n < n!$, $n \in \mathbb{N}$, then $P(n)$ is true	,
	1.)
a) for $n \ge 6$	b) for $n \ge 7$
c)	d)
for $n \ge 3$ (49) 2 2 2 2	for all n
By induction hypothesis, the series $1^2 + 2^2 + 3^2 + + p^2$ can be prov	
a) $\frac{p(p+1)}{2}$	b) $\left(\frac{p(p+1)}{2}\right)^2$
2	(2)
c) $\frac{p(p+1)}{4}$	d) $p(p+1)(2p+1)$
(50) Let * be a binary operation on a non-empty set S . Then $(S,*)$ is called a	
a) groupoid	b) semi-group
c) monoid	d) group
(51) If $(G,.)$ is a group with identity e such that $a^2=e$, $\forall a\in G$, then G is	
a) an abelian group	b) a non-abelian group
c) non-associative	d) none of these
(52) The inverse of the element $-i$ in the multiplicative group $\{-1,1,-i,i\}$, where i^2	= -1
a) <i>i</i>	b) -i
c) 1	d) -1
(53) The identity element in the multiplicative group $\{-1, 1, -i, i\}$, where $i^2 = -1$	
a) i	b) -i
c) 1 (54) A manaid(M, i) is called a group if	d) -1
(54) A monoid $(M,+)$ is called a group if a) $a+b=b+a=e$	b) $a+(b+c)=(a+b)+c$
c) $a+b=b+a \forall a,b \in M$	d) $a+b \in M, \forall a,b \in M$
(55) The order of the additive group (Z, +)	d) 10 (212, 10,0 (21)2
	h) Finite but more than 1
a) 1c) Infinite	b) Finite but more than 1d) (Z,+) does not formed a group
(56) If $(G,.)$ be a group then $(ab)^{-1} = ?$	a) (-, /
	b) 1
a) a ⁻¹ b	b) ab^{-1}
c) $a^{-1}b^{-1}$	d) $b^{-1}a^{-1}$
(57) The number of elements in the symmetric group S_3 is	
a) 1	b) 3
c) 6 (58) The units of the ring $(Z_{\omega},+,.)$ are	d) 9
	L)
a) ī,̄ʒ	b) ī,̄5
c) <u>i</u> , <u>ā</u>	d) None of these
(59) The order of the element $\bar{5}$ in the group $(Z_{35,*}+)$ is-	

(00) Inverse of the element 3 in the group $(L_{\gamma},+)$ is-

a) 1 b) 2 c) 3 d) 5