BRAINWARE UNIVERSITY ## Term End Examination 2021 - 22 Programme – Bachelor of Technology in Computer Science & Engineering Course Name – Design and Analysis of Algorithm Course Code - BCSE401 (Semester IV) | Time allotted: 1 Hrs.25 Min. | | Full Marks : 70 | | | |---|--|--|--|--| | [The figure in the margin indicates full marks.] | | | | | | | Group-A | | | | | (Multiple Choice Type Question) | | 1 x 70=70 | | | | Choose the correct alternative from the followi | ng: | | | | | (1) Which of the following is/are property/prop | erties of a dynamic programming problem? | | | | | a) Optimal substructure | b) Overlapping sub problems | | | | | c) Greedy approach | d) Both optimal substructure and oblems | overlapping sub pr | | | | (2) If a problem can be solved by combining op tegy is called | otimal solutions to non-overlapping problems | , the stra | | | | a) Dynamic programming | b) Greedy | | | | | c) Divide and conquer | d) Recursion | | | | | (3) In dynamic programming, the technique of | storing the previously calculated values is cal | lled | | | | a) Saving value property | b) Storing value property | | | | | c) Memoization | d) Mapping | | | | | (4) Which of the following problems is NOT so | olved using dynamic programming? | | | | | a) 0/1 knapsack problem | b) Matrix chain multiplication pr | b) Matrix chain multiplication problem | | | | c) Edit distance problem | d) Fractional knapsack problem | | | | | (5) The 0/1 Knapsack problem is an example of | f | | | | | a) Greedy algorithm | b) 2D dynamic programming | b) 2D dynamic programming | | | | c) 1D dynamic programming | d) Divide and conquer | | | | | (6) Which of the following methods is efficient | in solving Fractional Knapsack problem? | | | | | a) Brute force | b) Recursion | | | | | c) Dynamic programming | d) Greedy | | | | | (7) You are given a knapsack that can carry a m s {20, 30, 40, 70} and values {70, 80, 90, 20 carry using the knapsack? | naximum weight of 60. There are 4 items with 00}. What is the maximum value of the items | | | | | a) 160 | b) 200 | | | | | c) 170 | d) 90 | | | | (8) Consider the two matrices P and Q which are 10 x 20 and 20 x 30 matrices respectively. What is | two matrices? | |--| | b) 20 X 30 | | d) 10 X 20 X 30 | | ing method? | | b) Subset sum problem | | d) Travelling salesman problem | | ng a tree of choices called as? | | b) State-chart tree | | d) Backtracking tree | | es a complete solution? | | b) It continues searching for other possible solutions | | d) Recursively traverses through the same route | | g algorithm constructed? | | b) Breadth-first search | | d) Nearest neighbor first | | , 8 | | b) Exhaustive search | | d) Graph coloring problems | | <i>a</i>) | | b) lower | | d) no | | at could be computed to give the possible s | | b) Brute force | | d) Divide and conquer | | hose sum is equal to a given positive integ | | b) Subset sum problem | | d) Hamiltonian circuit problem | | that no two queens attack each other is cal | | b) Eight queens puzzle | | d) 1-queen problem | | ght Queen Puzzle applicable for n X n squa | | b) 6 | | d) n | | oard? | | b) 91 | | d) 93 | | board? | | b) 2 | | d) 0 | | | | b) lower | | d) no | | | | | | a) Big-O | b) Big-Omega | | |--|--|--| | c) Theta | d) All of these | | | (23) Of the following given options, which one of the follo timal solution for 4-queens problem? | wing is a correct option that provides an op | | | a) 3,1,4,2 | b) 2,3,1,4 | | | c) 4,3,2,1 | d) 4,2,3,1 | | | (24) Which of the following methods can be used to solve | n-queen's problem? | | | a) Greedy algorithm | b) Divide and conquer | | | c) Iterative improvement | d) Backtracking | | | (25) In n-queen problem, how many total solutions are there | re for n=4? | | | a) 1 | b) 2 | | | c) 3 | d) 4 | | | (26) Given items as {value,weight} pairs {{60,20},{50,25}} nd the maximum value output assuming items to be di | | | | a) 100, 80 | b) 110, 70 | | | c) 130, 110 | d) 110, 80 | | | (27) The main time taking step in fractional knapsack problem is | | | | a) Breaking items into fraction | b) Adding items into knapsack | | | c) Sorting | d) Looping through sorted items | | | (28) Given items as {value,weight} pairs {{40,20},{30,10},{20,5}}. The capacity of knapsack=20. Fi nd the maximum value output assuming items to be divisible. | | | | a) 60 | b) 80 | | | c) 100 | d) 40 | | | (29) What is the objective of the knapsack problem? | | | | a) To get maximum profit | b) To get minimum profit | | | c) To get maximum weight in the knapsack | d) To get minimum weight in the knapsack | | | (30) Fractional knapsack problem is solved most efficiently | y by which of the following algorithm? | | | a) Divide and conquer | b) Dynamic programming | | | c) Greedy algorithm | d) Backtracking | | | (31) How many number of moves are required to move 3 discs from one tower to another tower in To wer of Hanoi problem? | | | | a) 5 | b) 6 | | | c) 7 | d) 8 | | | (32) How many number of moves are required to move N over of Hanoi problem? | discs from one tower to another tower in To | | | a) (2 to the power N) - 1 | b) $(2 \text{ to the power N}) + 1$ | | | c) (2 to the power N) / 1 | d) (N to the power 2) - 1 | | | (33) What is the objective of tower of hanoi puzzle? | | | | a) To move all disks to some other rod by following rules | b) To divide the disks equally among the three rods by following rules | | | c) To move all disks to some other rod in random or
der | d) To divide the disks equally among three rods in ra
ndom order | | | (34) Recurrence equation formed for the tower of hanoi pro | oblem is given by | | | a) $T(n) = 2T(n-1)+n$ | b) $T(n) = 2T(n/2) + c$ | | | c) $T(n) = 2T(n-1)+c$ | d) T(n) = 2T(n/2) + n | | | (35) Master's theorem is used for? | | | | a) Solving recurrences | b) Solving iterative relations | | | c) Analyzing loops | d) Calculating the time complexity of any code | | | (36) How many cases are there under Master's theorem? | | |---|---| | a) 2 | b) 3 | | c) 4 | d) 5 | | (37) In which case of master theorem can be solved by bir | nary search? | | a) 1 | b) 2 | | c) 3 | d) It cannot be solved using master's theorem | | (38) What is the definition of graph according to graph the | eory? | | a) visual representation of data | b) collection of vertices and edges | | c) collection of edges | d) collection of vertices | | (39) The number of colors used by a proper coloring graph | h is called? | | a) k coloring graph | b) x coloring graph | | c) m coloring graph | d) n coloring graph | | (40) What is a chromatic number? | | | a) The maximum number of colors required for prop er edge coloring of graph | b) The maximum number of colors required for prop er vertex coloring of graph | | c) The minimum number of colors required for prop er vertex coloring of graph | d) The minimum number of colors required for prop er edge coloring of graph | | (41) What will be the chromatic number for an empty grap | oh having n vertices? | | a) 0 | b) 1 | | c) 2 | d) n | | (42) What will be the chromatic number for a line graph h | aving n vertices? | | a) 0 | b) 1 | | c) 2 | d) n | | (43) Which algorithm is used to solve a minimum cut algo- | orithm? | | a) Gale-Shapley algorithm | b) Ford-Fulkerson algorithm | | c) Stoer-Wagner algorithm | d) Prim's algorithm | | (44) separates a particular pair of vertice | es in a graph. | | a) line | b) arc | | c) cut | d) flow | | (45) How many edges in a spanning tree of a graph with v | vertices and E edges? | | a) V-1 | b) V+1 | | c) E-1 | d) E+1 | | (46) Which of the following algorithm is/are used to find a | minimum spanning tree? | | a) Prim | b) Kruskal | | c) Prim and Kruskal | d) None of these | | (47) Which of the following is/are methods to solve recurr | rence equations? | | a) substitution | b) recursion tree | | c) master method | d) all of these | | (48) Does Ford- Fulkerson algorithm use the idea of? | | | a) Naive greedy algorithm approach | b) Residual graphs | | c) Minimum cut | d) Minimum spanning tree | | (49) Which of the following is/are parameter to check effi | ciency of an algorithm? | | a) time complexity | b) space complexity | | c) time and space complexity | d) none of these | | (50) A simple acyclic path between source and sink which is called? | pass through only positive weighted edges | | a) Augmenting path | b) critical path | | c) residual path | d) maximum path | | | |---|---|--|--| | (51) Dijkstra's Algorithm is used to solve | _ problems. | | | | a) All pair shortest path | b) Single source shortest path | | | | c) Network flow | d) Sorting | | | | (52) Dijkstra's Algorithm cannot be applied on | | | | | a) Directed and weighted graphs | b) Graphs having negative weight function | | | | c) Unweighted graphs | d) Undirected and unweighted graphs | | | | (53) Which of the following is the correct recurrence equation of finding Fibonacci series using recurs ion? | | | | | a) $T(n) = T(n-1) + T(n-2)$ | b) $T(n) = T(n-1) - T(n-2)$ | | | | c) $T(n) = T(n-1) + T(n-1)$ | d) $T(n) = T(n-2) + T(n-2)$ | | | | (54) Sorting the edges in increasing order to find MST is a part of algorithm. | | | | | a) Kruskal | b) Prim | | | | c) Dijkstra | d) None of these | | | | (55) The Bellmann Ford algorithm returns value | ». | | | | a) Boolean | b) Integer | | | | c) String | d) Double | | | | (56) How many solution/solutions are available for a grap | oh having negative weight cycle? | | | | a) One solution | b) Two solutions | | | | c) No solution | d) Infinite solutions | | | | (57) What is the basic principle behind Bellmann Ford Al | gorithm? | | | | a) Interpolation | b) Extrapolation | | | | c) Regression | d) Relaxation | | | | (58) A graph is said to have a negative weight cycle when | 1? | | | | a) The graph has 1 negative weighted edge | b) The graph has a cycle | | | | | 1) 771 1 1 1 | | | | c) The total weight of the graph is negative | d) The graph has 1 or more negative weighted edges | | | | c) The total weight of the graph is negative (59) Floyd Warshall's Algorithm can be applied on | , | | | | | , | | | | (59) Floyd Warshall's Algorithm can be applied on | | | | | (59) Floyd Warshall's Algorithm can be applied on
a) Undirected and unweighted graphs | b) Undirected graphs d) Acyclic graphs | | | | (59) Floyd Warshall's Algorithm can be applied ona) Undirected and unweighted graphsc) Directed graphs | b) Undirected graphs d) Acyclic graphs | | | | (59) Floyd Warshall's Algorithm can be applied on a) Undirected and unweighted graphs c) Directed graphs (60) What approach is being followed in Floyd Warshall A | b) Undirected graphs d) Acyclic graphs Algorithm? | | | | (59) Floyd Warshall's Algorithm can be applied on | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking | | | | (59) Floyd Warshall's Algorithm can be applied on | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking | | | | (59) Floyd Warshall's Algorithm can be applied on | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking ning tree of a graph G? | | | | (59) Floyd Warshall's Algorithm can be applied on | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking hing tree of a graph G? b) It is a subgraph of the G d) It can be either cyclic or acyclic | | | | (59) Floyd Warshall's Algorithm can be applied on | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking hing tree of a graph G? b) It is a subgraph of the G d) It can be either cyclic or acyclic | | | | (59) Floyd Warshall's Algorithm can be applied on | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking hing tree of a graph G? b) It is a subgraph of the G d) It can be either cyclic or acyclic | | | | (59) Floyd Warshall's Algorithm can be applied on | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking ning tree of a graph G? b) It is a subgraph of the G d) It can be either cyclic or acyclic b) A minimum spanning tree d) DFS traversal orithm might produce a non-minimal spanni | | | | (59) Floyd Warshall's Algorithm can be applied on a) Undirected and unweighted graphs c) Directed graphs (60) What approach is being followed in Floyd Warshall A a) Greedy technique c) Linear Programming (61) Which of the following is false in the case of a spann a) It is tree that spans G c) It includes every vertex of the G (62) The travelling salesman problem can be solved using a) A spanning tree c) Bellman – Ford algorithm (63) Consider the following statements. S1. Kruskal's alg | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking ning tree of a graph G? b) It is a subgraph of the G d) It can be either cyclic or acyclic b) A minimum spanning tree d) DFS traversal orithm might produce a non-minimal spanni | | | | (59) Floyd Warshall's Algorithm can be applied on | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking ning tree of a graph G? b) It is a subgraph of the G d) It can be either cyclic or acyclic b) A minimum spanning tree d) DFS traversal orithm might produce a non-minimal spanni emented using the disjoint-set data structure. | | | | (59) Floyd Warshall's Algorithm can be applied on | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking ning tree of a graph G? b) It is a subgraph of the G d) It can be either cyclic or acyclic b) A minimum spanning tree d) DFS traversal orithm might produce a non-minimal spanniemented using the disjoint-set data structure. b) Both S1 and S2 are false d) S2 is true but S1 is false | | | | (59) Floyd Warshall's Algorithm can be applied on a) Undirected and unweighted graphs c) Directed graphs (60) What approach is being followed in Floyd Warshall A a) Greedy technique c) Linear Programming (61) Which of the following is false in the case of a spannal it is tree that spans G c) It includes every vertex of the G (62) The travelling salesman problem can be solved using a) A spanning tree c) Bellman – Ford algorithm (63) Consider the following statements. S1. Kruskal's algorithm can efficiently implements a) S1 is true but S2 is false c) Both S1 and S2 are true | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking ning tree of a graph G? b) It is a subgraph of the G d) It can be either cyclic or acyclic b) A minimum spanning tree d) DFS traversal orithm might produce a non-minimal spanniemented using the disjoint-set data structure. b) Both S1 and S2 are false d) S2 is true but S1 is false | | | | (59) Floyd Warshall's Algorithm can be applied on a) Undirected and unweighted graphs c) Directed graphs (60) What approach is being followed in Floyd Warshall and Greedy technique c) Linear Programming (61) Which of the following is false in the case of a spannal and It is tree that spans G c) It includes every vertex of the G (62) The travelling salesman problem can be solved using an A spanning tree c) Bellman – Ford algorithm (63) Consider the following statements. S1. Kruskal's algorithm can efficiently imples and S1 is true but S2 is false c) Both S1 and S2 are true (64) Time Complexity of DFS is? (V – number of vertices) | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking ning tree of a graph G? b) It is a subgraph of the G d) It can be either cyclic or acyclic b) A minimum spanning tree d) DFS traversal orithm might produce a non-minimal spanniemented using the disjoint-set data structure. b) Both S1 and S2 are false d) S2 is true but S1 is false s, E – number of edges) | | | | (59) Floyd Warshall's Algorithm can be applied on a) Undirected and unweighted graphs c) Directed graphs (60) What approach is being followed in Floyd Warshall and Greedy technique c) Linear Programming (61) Which of the following is false in the case of a spannal and It is tree that spans G c) It includes every vertex of the G (62) The travelling salesman problem can be solved using and A spanning tree c) Bellman – Ford algorithm (63) Consider the following statements. S1. Kruskal's algorithm can efficiently imples and S1 is true but S2 is false c) Both S1 and S2 are true (64) Time Complexity of DFS is? (V – number of vertices and O(V + E) | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking ning tree of a graph G? b) It is a subgraph of the G d) It can be either cyclic or acyclic b) A minimum spanning tree d) DFS traversal orithm might produce a non-minimal spanniemented using the disjoint-set data structure. b) Both S1 and S2 are false d) S2 is true but S1 is false s, E – number of edges) b) O(V) d) None of the mentioned | | | | (59) Floyd Warshall's Algorithm can be applied on a) Undirected and unweighted graphs c) Directed graphs (60) What approach is being followed in Floyd Warshall A a) Greedy technique c) Linear Programming (61) Which of the following is false in the case of a spannal it is tree that spans G c) It includes every vertex of the G (62) The travelling salesman problem can be solved using a) A spanning tree c) Bellman – Ford algorithm (63) Consider the following statements. S1. Kruskal's algorithm can efficiently imples a) S1 is true but S2 is false c) Both S1 and S2 are true (64) Time Complexity of DFS is? (V – number of vertices a) O(V + E) c) O(E) | b) Undirected graphs d) Acyclic graphs Algorithm? b) Dynamic Programming d) Backtracking ning tree of a graph G? b) It is a subgraph of the G d) It can be either cyclic or acyclic b) A minimum spanning tree d) DFS traversal orithm might produce a non-minimal spanniemented using the disjoint-set data structure. b) Both S1 and S2 are false d) S2 is true but S1 is false s, E – number of edges) b) O(V) d) None of the mentioned | | | | c) Linked List | d) None of the mentioned | |---|--| | (66) In Depth First Search, how many times a node is visit | ted? | | a) Once | b) Twice | | c) Equivalent to number of indegree of the node | d) None of the mentioned | | (67) Branch and bound is a | | | a) Problem solving technique | b) Data structure | | c) Sorting algorithm | d) Type of tree | | (68) What will be the number of passes to sort the elemen | ts using insertion sort? 14, 12,16, 6, 3, 10 | | a) 6 | b) 5 | | c) 7 | d) 1 | | (69) What is an in-place sorting algorithm? | | | a) It needs O(1) or O(logn) memory to create auxilia ry locations | b) The input is already sorted and in-place | | c) It requires additional storage | d) None of the mentioned | | (70) The time complexity of binary search is | | | a) O(n) | b) O(log n) | | c) O(n log n) | d) O(n!) |